

P14-86-857

1986

К.Н.Крэчун, С.И.Морозов, И.Натканец, В.В.Сумин³

ИЗУЧЕНИЕ ЛОКАЛЬНЫХ КОЛЕБАНИЙ ВОДОРОДА В ТВЕРДЫХ РАСТВОРАХ Zr - О МЕТОДОМ НЕУПРУГОГО РАССЕЯНИЯ НЕЙТРОНОВ

Направлено в журнал "Физика твердого тела"

¹Институт ядерных энергетических реакторов, Питешти, СРР

- 2 Физико-энергетический институт, Обнинск
- ³Филиал Физико-химического института

им.Л.Я.Карпова,Обнинск

I. BBEAEHNE

Исследование систем металл – примесь внедрения и, в частности, систем Me – X – H, где X – примесь внедрения, методом неупругого рассеяния нейтронов (HFH) представляет большой интерес в связи с возможностью получения информации о потенциале взаимодействия между матрицей и атомами внедрения, а также о потенциале взаимодействия примесь – примесь.

В ряде случаев метод НРН оказывается чрезвычайно чувствительным к наличию в образце гидридной фазы или занятию водородом альтернативных междоузельных позиций. Это позволяет определить пределы растворимости Н в α -фазе, исследовать вопросы взаимного влияния примесей, наблюдать подавление выпадения гидрида в присутствии других примесей, изучить эффект захвата водорода примесными атомами.

Так, в /I/ исследовался захват водорода в ниобии на примесных ловушках кислорода, азота и ванадия. Было показано, что водород в захваченном состоянии находится, как и в \measuredangle -фазе, в тетраздрических позициях (t- p) в относительно неискаженном окружении атомов Nb .

В наших работах $^{/2-4/}$ исследовались сплавы Ті – 0 – Н при различных температурах и концентрациях примесей. Оказалось, что при содержании кислорода ≥ 12 ат.% водород локализуется в окта-порах (о – р) решетки титана.

Интересно отметить, что в /6/ сообщается о синтезе сверхпроводящей фазы гидрида титана, полученной под давлением. Авторы предполагали, что в полученной ими фазе водород находится в о - р. В недавней работе /7/ это предположение было подтверждено в исследованиях методом НРН и нейтронографически. По-видимому, сверхпроводимость систем Ті – Н и Zr-H, полученных методом имплантации водорода /8/, также обязана образованием состоянию, в котором водород находится в о - р. В связи с этим было бы интересно исследовать

RURALITENA

сплавы Ті – 0 – Н с точки зрения изучения сверхпроводящих свойств данной системы.

В недавней работе ^{/9/} в системе VO_xH_y методом НРН также наблюдался водород, локализованный в о – р. Причиной локализации Н в о – р в этой системе, как и в NL-O-H, является упругое взаимодействие О – Н. При этом надо отметить, что искажения вокруг примеси внедрения в ОЦК-решетках много больше, чем в плотноупакованных структурах, в частности в Ті и Z г^{/17/}.

Таким образом, на ряде систем было показано, что деформационное взаимодействие X – Н может приводить к подавлению выпадения гидридных фаз и захвату водорода на примесях X. При этом водород в некоторых случаях переходит из ℓ – р в о – р.

В связи со сказанным выше нам представлялось интересным исследовать систему Z г - 0 - H, во многом подобную системе Ti - 0 - H, однако с меньшей величиной локальных искажений вокруг примесного атома /16/. В работе /10/ отмечалось, что частота колебаний водорода в сплаве Z г_{0,74}0_{0,26} близка к частоте оптических колебаний гидрида циркония. Однако малое содержание водорода не позволило точно определить характеристики локального колебания.

В недавней работе^{/II/} в сплаве 2 го_{0,4}H_{0,I} методом НРН также наблюдалась энергия колебаний водорода, близкая к энергии оптического пика 2 гH₂ (I35 и I38 мэВ соответственно). Для данного состава 2 г - О отмечено также перераспределение кислорода по междоузельным позициям при дейтерировании.

В настоящей работе исследовались сплавы $\mathcal{Z}r - 0 - H$ при различных температурах и концентрациях примесей с целью определения концентрационных и температурных особенностей структуры и динамики примесных атомов в этой системе. В этой же работе выполнени измерения гидрида циркония $\mathbb{Z} \upharpoonright H_{I,2}$. Фазовый анализ нейтронограми, проведенный в /I2/, показал, что данный образец представляет собой δ -гидрид с небольшой примесью χ -фазы.

2. Постановка эксперимента и обработка результатов

2.1. Сплавы циркония с кислородом были получены многократной переплавкой соответствующих количеств йодидного циркония с двуокисыю циркония в аргонно-дуговой печи. После плавки слитки подвергались гомогенизирующему отжигу при T = 900°C в вакууме в течение неделй, после чего медленно охлаждались до комнатной температуры. Насыщение образцов водородом проводилось из газовой фазы в вакуумной установке с калиброванными объемами. Для спектрометрических исследований были приготовлены образцы составов $Z
m ^{\circ}O_{0,25}H_{0,09}$ и $Z
m ^{\circ}O_{0,03}H_{0,01}$. Проведенный нейтронографический и рентгенографический анализ не обнаружил наличия в образцах гидридной фазы с точностью до ~ I%. В сплаве $Z
m ^{\circ}O_{0,03}H_{0,01}$ кислород статистически распределен по октаэдрическим междоузлиям ГПУ-решетки металла. Сплав же $Z
m ^{\circ}O_{0,25}H_{0,09}$ представляет собой упорядоченную по кислороду «"-фа-зу /I3". Структурные исследования распределения примесей внедрения в образцах $Z
m ^{\circ}O_{0,37}D_{0,1}$.

Измерения спектров НFH водородосодержащих образцов выполнялись при температурах 293 и 80 К на спектрометре обратной геометрии КДСОГ-М /14/, установленном на реакторе ИБР-2. Разрешение спектрометра составляет 4 и 15 мэВ для передач энергии $\mathcal{E} \simeq 52$ и 140 мэВ соответственно.

Полученные из слитков порошкообразные образцы засыпались в тонкостенный алюминиевый контейнер и устанавливались в криостат. Пропускание образцов составляло ~ 85%. В этом случае многократным рассеянием можно пренебречь /15/.

2.2. Экспериментальные спектры НРН на первом этапе обрабатывались до уровня дважды дифференциальных сечений (ДДС). С этой целью после вычитания фона быстрых нейтронов и поправок на падающий спектр нейтронов в спектр НРН вводились поправки на ослабление потока нейтронов в образце в присутствии криостата с контейнером за счет поглощения и однократного рассеяния. Аналогичная процедура выполнялась для измерений криостата с контейнером без образца, после чего рассеяние на криостате с контейнером вычиталось из общего сечения рассеяния образец + криостат + контейнер.

Подученные экспериментальные ДДС содержат вклад многофононных процессов (МФР). Их учет (вплоть до процесса 5-го порядка) осуществлялся для каждого компонента сплава с помощые процедуры, аналогичной описанной в /15/. После поправок на МФР однофононные ДДС обрабатывались до уровня $\Theta(\varepsilon)$ - обобщенного спектра частот (ОСЧ) в некогерентном приближении:

$$\Theta(\varepsilon) = \frac{g(\varepsilon/h)}{3N} \sum_{j} e^{-2W_{j}} f_{j} \frac{\phi_{j}}{M_{j}} \left| \vec{e}_{j}(\varepsilon) \right|^{2}. \quad (1)$$

Функция же $\Theta(\xi)$ связена с однофононными ДДС рассеяния при помощи соотношения

$$\frac{d^2 \sigma}{d\Omega d\varepsilon} = \frac{\kappa_s \hbar \varepsilon^2}{8\pi\kappa_c \varepsilon} \cdot \frac{\theta(\varepsilon)}{1 - \exp(\varepsilon/\kappa T)} , \qquad (2)$$

2

где j -индекс компоненты сплава, $f_j -$ доля атомов j-й компоненты, $|\overline{C}_j(\varepsilon)|^2$ – усредненные по распределению атомов по узлам решетки квадраты модулей векторов поляризации, связанных с колебаниями j-х атомов. κ_i и κ_i – волновые векторы нейтронов до и после рассеяния соответственно. Остальные обозначения общеприняты /19/.

Извлеченные в результате обработки спектры частот кислорода и водорода в области локальных колебаний (ЛК) описывались гауссовскими кривыми методом наименьших квадратов.

3. Экспериментальные результаты

На рис. І и 2 приведены высокочастотные части спектров НРН сплавов Z го_{0,25}H_{0,09} и Z го_{0,03}H_{0,01}, соответствующие рассеянию нейтронов на колебаниях атомов внедрения при температурах 293 и 80 К.Из приведенных спектров вычтено рассеяние на чистом цирконии. Нижняя сплошная линия отвечает расчету МФР на атомах кислорода и водорода. Вклад МФР в области ЛК водорода в изучаемых сплавах Z г-0 - Н составляет 20 ÷ 25 % для T = 293 К и 7 ÷ 10 % для T = 80 К.

Передача энергии для показанных времяпролетных спектров определяется по формуле

 $\frac{\mathcal{E}(M_{3}B)}{\mathcal{E}} = 5,227 \cdot 10^{6} \cdot (\frac{L}{\tau})^{2} / (\frac{N_{k}}{-4.0})^{2} - 4,8,$ где \angle - длина первой пролетной базы, \angle = 29,68, τ ширина канала, а N_{k} - номер канала времяпролетного спектра.

3.J. Пики при передаче энергии $\mathcal{E} = 51, I \pm 0,5$ мэВ (T = = 293 K) и $\mathcal{E} = 52, 0 \pm 0,5$ мэВ (T = 80 K) (рис. I) соответствуют колебаниям атомов кислорода. Собственные ширины этих особенностей на половине высоты (ΔE_c) составляют 7,3 ± 0,6 мэВ и 8,0 ± 0,6 мэВ для измерений при 293 и 80 К соответственно. Погрешность в определении положения кислородной ссобенности составляет~0,I мэВ без учета систематической ошибки. Как видно, максимум пика смещается с понижением температуры в область бо́льших частот.

В спектре колебаний водородных атомов в сплаве $Z
 r o_{0,25} H_{0,09}$ отчетливо наблюдаются возбуждения вплоть до третьей гармоники. С понижением температуры полоса колебаний Н смещается (I42,I и I43,4 мэВ для 293 и 80 К соответственно). Здесь и далее положения максимумов и полуширины приведены без учета вклада многофононных процессов. Собственные ширины первой гармоники Н-колебания составляют

 $\Delta E_{c} = 39$ мэВ (T = 293 K) и $\Delta E_{c} = 34$ мэВ (T = 80 K). Дифракционные измерения дали следующие значения параметров ГПУ-

Рис. I. Спектры НРН примесных колебаний кислорода и водорода сплава $Z_{100}, 25^{H_0}, 09$, полученные при T = 293 K (а) н T = 80 K (б) в диапазоне углов рассеяния $80^{\circ} + 140^{\circ}$. $N_{\rm R}$ - номер канала (ширина канала = 128 мкс); $\mathcal{E} = E_i - E_f$, где E_i и E_f - энергии нейтронов до и после рассеяния; $E_f = 4,8$ мзВ. Положения пиков указаны в мзВ. Горизонтальными отрезками показана полуширина функции разрешения экспериментальной установки. Сплошная кривая под спектрами - расчет многофононного рассеяния.

Рис. 2. Спектры НРН примесных колебаний кислорода и водорода сплава $Z \upharpoonright 0_{0,03}H_{0,01}$, полученные при T=293 К (α) и T = 80 K (6) в диалазоне углов рассеяния 80° + I40°. Обозначения те же, что и для рис. I.

решетки данного сплава: $q_o = 3,252$ Å, $c_o = 5,207$ Å для T = 293 K и $q_o = 3,245$ Å, $c_o = 5,192$ Å для T = 80 K.

3.2. Спектр НРН сплава $Z
vert_{0,03}H_{0,01}$ в области ЛК (рис. 2) подобен спектру сплава $Z
vert_{0,25}H_{0,09}$. Положение кислородной особенности $\mathcal{E} = 52.6 \pm 0.3$ мэВ не меняется при понижении температуры. Остается постоянной и ширяна пика на половине высоты ($\Delta E_c \simeq$ $\simeq 8.0 \pm 1.2$ мэВ). Увеличение энергии колебаний кислорода (по отношению и результату на сплаве $Z
vert_{0,25}H_{0,09}$) коррелирует с уменьшением расстояния \mathcal{R}_{Me-0} . Параметры ГПУ-решетки сплава $Z
vert_{0,03}H_{0,01}$ $\alpha_o = 3.235$ Å, $c_o = 5.154$ Å и $\alpha_o = 3.23$ Å, $c_o = 5.144$ Å для T = 293 K и T = 80 К соответственно.

Наблюдаемая в эксперименте энергия колебаний водорода в сплаве $Z r 0_{0.03} H_{0.01}$ $\hbar \omega \simeq 140$ мэВ практически не меняется с понижением температуры. Собственные ширины пиков $\Delta E_c = 36 \text{ мэВ}$ и $\Delta E_c = 30 \text{ мэВ}$ для T = 293 К и 80 К соответственно. Очевидно, что, как и в Zro_{0,25}H_{0,09}, водород эдесь находится в позиции с тетра-эдрической координацией. Однако удивительно, что при уменьшении параметров решетки частота колебаний водорода понизилась. Возможные причины такого поведения водорода будут обсуждаться ниже.

Из рис. І и 2 видно, что положения второй и третьей гармоник колебаний водорода для обоих сплавов смещаются в область больших частот при понижении температуры. Причиной таких смещений может быть как уменьшение вклада акустических колебаний в многофононное рассеяние, так и эффекты ангармонизма. Рассмотрение этих вопросов требует специального анализа, котогый предполагается провести в цальнейшем.

В табл. I приведены параметты спектров колебаний вопорода. наблодаемые в эксперименте до и после введения поправок на многофононное рассеяние. Как видно из таблицы, учет МФР приводит к изменению в положении водородных особенностей на. ~ 2% и изменению в ширине на ~ 25% (при T = 293 К). Относительный же сдвиг частот при понижении температуры не изменяется.

После учета МФР ширины пиков остаются значительными по величине и практически не зависят от температуры образца.

3.3. Структурные нейтронографические исследования проводились для образцов Zr00,37 и Zr00,37D0, при комнатной темпера-туре. Структура данных сплавов (см. рис. 3) соответствует пространственной группе РЗІ2 с параметрами q = 5,626 Å, c = 5,195 Å и a = 5,63 Å, c = 5,221 Å для образца без дейтерия и с дейтерием соответственно ($\alpha = \alpha_0 \cdot \sqrt{3}$, $c = c_0$). Вероятности заполнения кислородом частных позиций If, Id и Ia близки к результатам, полученным в /16/ (R - фактор составляет 8,%). Наилучший Rфактор при обработие нейтронограмм сплава $Z \upharpoonright 0_{0,37} D_{0,1}$ был по-лучен для распределения кислорода, сравнимого с распределением его в сплаве $Z \upharpoonright 0_{0,37}$. Водород же статистически распределен по t - p(R = 6,8%). Результаты структурных исследований приведены в табл.2.

4. Обсуждение результатов

4.1. Известно, что водород практически не растворяется в « `- Z г при комнатной температуре. Введение в Z г кислорода приводит к заметному расширению области ос -твердого раствора /20/

	Tao	IMUA I.	Энергии и ширины	колебательных	спектров водоро		
Ocpaseu	Т, К	R +- P, R	$\hbar\omega_{t}$, wab	∆ Ec,, w∋B	$\hbar\omega_{2}$, wab	∆ Ec₂, M3B	
H V	8	I,974	$I4I,9 \pm I,7$ ($I43,4 \pm 0,2$)	32 <u>+</u> 3 (30 <u>+</u> 0,4)	290 ± 6	3 - 6	
	293	I,979	I40,5 <u>+</u> I,7 (I42,I <u>+</u> 0,2)	31 <u>+</u> 3 (39 <u>+</u> 0,4)	278 ± 6	49 - 7	
H Z	86	I,962	I38,5 <u>+</u> 2,0 (I40,0 <u>+</u> 0,4	28 <u>+</u> 4 (30 <u>+</u> 0,9)	293 ± 7	5I - I0	
0,03-0,01	293	I ,965	$I37,7 \pm 2.0$ ($I40.0 \pm 0.4$)	28 <u>+</u> 4 (36 <u>+</u> 1,0)	282 ± 7	70 ± 14	
Zrh _{I,2}	293	2,069	$I38,3 \pm I,6$ ($I40,8 \pm 0,I$)	26 <u>+</u> 3 (32 <u>+</u> 0,3)	279 ± 5	37 ± 6	
$R_{4-p} - paccroiting$	RIHKE OT - HONOR	центра т ения I и	етраздрической поз 2 гармоник кодебат	иции до узла и ельного спектр	ристаллической р в водорода соотв	Xeretkn Metalia Metetberho.	:

∆ Е_{с.,2} - собственные В скобках приведены

расселние

гармении колебательного спектра водорода соответственно.

собственные шкрины пиков на половине высоты. Разредение учтено.

SECIIO DWMEHT

m TOLI

наблицае

VRASANHHIG ITON

WHOCTN

значения без поправки на многофононное

CHCTCMATNUCKON

Рис. 3. Проекция структуры $\measuredangle''- \phi$ азы сплава $Z \uparrow 0_{0.37} D_{0.1}$ на плоскости (110) и (001). А, В' и С – октаздрические позиции, занятые кислородом. Пунктирные линии показывают расположение слоев тетраздрических позиций, занимаемых водородом. Вероятности заполнения междоузельных позиций и их координаты приведены в таблице 2. Примитивная ячейка ГПУ-решетки металла показана штрих-пунктиром.

Рис. 4. І – спектр частот атомов водорода в сплаве Zr0_{0,25}H_{0,09} (точки – эксперимент, сплошная линияэксперимент, описанный гауссовской кривой по MHK).

2 - спектр оптических колебаний гидрида ZrH_{I.2}.

Спектр колебаний водорода в сплаве $Z
vert^{0}_{0,03}H_{0,01}$ практически совпадает с пунктирной линией. $\mathcal{E} = E_i - E_f$.

Однако угол тройной диаграммы $Z \vdash -0$ – Н исследован только при высоких температурах ($T \simeq 750^{\circ}C$ /23/). Поэтому, вообще говоря, вопрос о том, находится ли водород в конкретном образце $Z \vdash 0_{x}H_{y}$ при комнатной температуре в \measuredangle -твердом растворе или в гидридной фазе, требует специального решения.

В работе /4/ было показано, что водород в системе Ті – 0 – Н при больших концентрациях кислорода занимает о – р. При этом водород находится в твердом растворе вплоть до температуры жидкого гелия и энергия его колебаний $\hbar\omega = 86$ мэВ.

Сравнение результатов /4/ и настоящей работы указывает на

Таблица 2. Нейтронографические данные по структуре сплавов Zr00.37 и Zr00.37D0.1

Образец	Атом	Позиция	Вероятность занятия позиции	x	У	Z
Пространственная группа РЗІ2	Zr	6l	I	I/3	0	I/4
Zr00,37		If (A)	0,72	2/3	I/3	1/2
$\alpha = 5,626$ Å	0	I4 (C)	0,8	I/3	2/3	1/2
R = 8,9%		Ia (B')	0,69	0	0	0
Пространственная группа РЗІ2	Zr	6	I	I/3	0	I/4
Zr00,37D0,I		If (A)	0,76	2/3	I/3	1/2
$\alpha = 5,63$ Å	0 D	Id (C)	0,7	I/3	2/3	I/2
c = 5,221 Å		Ial (B')	0,76	0	0	0
R = 6,8%		$6l(t_2)$	0,05	I/3	I/3	I/8
		6l (ł,)	0,05	I/3	0	5/8

различное поведение водорода в этих системах. Большая частота колебаний водорода в сплаве Z г 0_{0,25}H_{0,09} ($\hbar \omega \simeq 141$ мэВ) свидетельствует о том, что, как и в гидриде циркония, водород в данном образце находится в позиции с тетраэдрической координацией.

На рис. 4 показана зависимость функции $O(\mathcal{E})$ водорода от переданной энергия \mathcal{E} в области оптических частот для $Z^{r0}_{0,25}H_{0,09}$ и $Z^{r}H_{I,2}$. Как видно, энергия колебания водорода в гидриде циркония меньше, чем в сплаве $Z^{r0}_{0,25}H_{0,09}$, что коррелирует с бо́яыним, чем для твердого раствора, раднусом тетраэдрической позиции (см. таблицу I).

Разность в наблюдаемых энергиях колебаний водорода в образцах $Z
vert^{0}_{0,25
m H_{0,09}}$ и $Z
vert^{H}_{I,2}$ $\Delta \xi = I,3 \pm 0,3$ мэВ выходит за пределы статистической точности определения положения максимумов. Проведенный, кроме того, фазовый анализ образцов $Z
vert^{0}_{0,25
m H_X}$ показал, что при комматной температуре выпадение гидрида подавляется (с точностых до $\sim 1\%$ второй фазы) при отножения 0/H ≥ 2 . Таким образсы,

8

можно утверждать, что водород в сплаве $Z > 0_{0,25}H_{0,09}$ находится в твердом растворе в ГПУ – решетке металла. Дальнейший сдвиг ЛК водорода в образце $Z > 0_{0,25}H_{0,09}$ в область больших частот при понижении температуры означает, что при этом не происходит выпадения гидрида по крайней мере до T = 80 K.

Возрастание энергии колебаний водорода в данном сплаве сочетается с уменьшением параметра решетки. Если предположить зависимость частоты колебаний водорода от расстояния металл – водород в виде $\hbar \omega(R) \sim R^{-x}$, то можно оценить параметр х: $\mathbf{x} \simeq 4,5$. Эта величина существенно больше, чем значение $\mathbf{x} = \mathbf{I},5$, предлагаемое в/21/ для описания экспериментальной зависимости $\hbar \omega_H(R_{M_{c}-H})$ в плотноупакованных структурах.

Поэтому, вероятно, существует и другой механизм, вызывающий изменение энергии колебаний водорода в $Z \upharpoonright 0_{0.25} H_{0.09}$.

Возможно, при понижении температуры происходит упорядочение водородных атомов относительно атомов кислорода, что приводит к увеличению эффективного взаимодействия 0 - Н и смещению пика ЛК водоропа в область бо́льших частот.

4.2. При снижении содержания кислорода в $Z \vdash$ параметры реметаллической решетки. В то же время частота колебаний водорода в $Z \vdash 0_{0,03}H_{0,01}$ ниже, чем в $Z \vdash 0_{0,25}H_{0,09}$, и практически совпадает с частотой оптических колебаний гидрида циркония (см. табл. I). Относительный сдвиг частот колебаний водорода в исследуемых нами сплавах при переходе от одного состава к другому составляет 2,8 ± ±0,6 мэВ и 3,4 ± 0,6 мэВ при комнатной и "азотной" температурах соответственно. С другой стороны, предполагая зависимость частоты колебаний водорода от расстояния Ме – Н в виде $f_{\omega}(R) \sim R^{-x}$, мы получим для $Z \vdash 0_{0,03}H_{0,01}$ энергию колебаний водорода, по крайней мере большую, чем для $Z \vdash 0_{0,25}H_{0,09}$.

Возможным объяснением наблюдаемого в эксперименте уменьшения энергия колебания водорода в ZrO_{0,03}H_{0,01} по отношению к ZrO_{0,25}H_{0,09} является выпадение гидрида циркония в первом из них, не обнаруженного нейтронографически из-за малого количества этой фазы.

Подобное явление наблюдалось в системе Ti – 0 – H. На рис. 5 показан полученный в /4/ спектр HFH водорода ($\mathcal{E}_1 \simeq 90$ мэВ, $\mathcal{E}_2 \simeq 140$ мэВ) и кислорода ($\mathcal{E}_0 \simeq 60$ мэВ) в области примесных колебаний для сплава Ti_{0,96}0_{0,04}H_{0,02}. Особенности \mathcal{E}_1 и \mathcal{E}_2 отвечают колебаниям водорода в октаздрическом и тетраздряческом окружении атомов металла соответственно. Оценки площадей пиков показывают,

Рис. 5. Спектр НРН примесных колебаний кислорода и водорода в сплаве $T_{0,96}O_{0,04}H_{0,02}$, измеренный при T == 293 K (a) и при T = 80 K (б) в диапазоне углов рассеяния 100° + 140° . Обозначения те же, что и для рис. I.

что около 7% атомов водорода колеблются с энергией $\hbar \omega_{,} \simeq 90$ мэВ и 93% - с энергией I40 мэВ. Тщательный рентгеноструктурный анализ позволил обнаружить в образце $\sim 1,2\%$ гидрида титана. Таким образом, подавляющее количество водорода в этом образце находится в гидридной фазе.

Дальнейшие нейтронографические и спектрометрические исследования показали, что для $0/H \ge 2$ кислород полностью подавляет выпадение гидрида титана только при достаточно больших концентрациях 0. При этом в случае $C \ge 8$ ат.% кислорода весь водород находится в о - р.

Таким образом, несмотря на различие в позициях локализации водорода в системах $Z \vdash -0 - H$ и Ті – 0 – Н, имеются и общие черты в их поведении в зависимости от состава и температуры. В обеих системах наличие кислорода в количестве $\sim 10 + 30$ ат.% полностью подавляет выпадение гидрида при соотношении $0/H \ge 2$. При этом \ll – фаза остается стабильной и при низких температурах.

Для спектров колебаний водорода в сплавах $Z \vdash -0 - H$ и Ti – 0 - H характерным является большая собственная ширина примесных полос ($\Delta E_c \simeq 30$ мэВ, см. табл. I). При низких температурах такая ши- ' рина не может быть объяснена эффектами времени жизни. В отличие от гидрида, нельзя связывать ширину с дисперсией колебаний, поскольку концентрации H невелики.

Возможны несколько механизмов, объясняющих большую ширину полосы колебаний водородных атомов в твердом растворе при низких температурах. В /24/ большая ширина примесных колебаний водорода связывается с делокализацией возбужденных состояний. Другой механизм, рассматриваемый в /1/, – расцепление основного и возбужденных состояний, вызванное взаимодействием 0 – Н. В /25/ рассчитано затухание дипольного осциллятора за счет поглощения излучения. Оценка дает для протона в металле ширину уровня ~3 мэВ. Можно, конечно, назвать и другие причины уширения ЛК. Тем не менее вопрос ширины ЛК водорода в переходных металлах на сегодняшний день окончательно не решен.

4.3 В отличие от данных /II/ по энергии колебаний водорода в $Zro_{0,4}H_{0,I}$, значение энергии колебаний водорода в исследуемом нами твердом растворе $Zro_{0,25}H_{0,09}$ больше, чем в гидриде циркония. Кроме того, в структуре сплавов $Zro_{0,37}D_{0,I}$, изучавшегося в данной работе, и $Zro_{0,4}D_{0,I}$ /II/ есть определенные различия. В последнем случае кислород распределяется по слоям октаедрических меадоузлий (см. рис. 3), оставляя почти пустым кандый второй слой о - р. а дейтерий занимает t - р вокруг занятого кислородом слоя о - р. Наши же спектрометрические и нейтронографические данные не отмечают заметного влияния водорода (дейтерия) на кислород. Мы не наблюдаем перераспределения кислорода в дейтериярованном образце (см. табл. 2). Описание нейтронограммы сплава $Zro_{0,37}D_{0,I}$ с распределением кислорода и водорода, приведенным в [II] для сплава $Zro_{0,4}D_{0,I}$, дает R-фактор I8,5%. Эти различия могут быть связаны с условиями термообработки сплавов, поскольку равновесное состояние по кислороду достигается весьма трудно.

•4.4. Анализ совокупности результатов, описанных во введеныя, по влияные внутренных напряженый за счет внедрения примесных атомов и внешнего давления на локализацию водореда в переходных металках и результатов данной работы показывает: водород может переходить из *t* - р в о - р при наличии в образце деформаций, вызванных либо приложенным внешним давлением, либо примесными атомами. При этом в СЦК-кристаллах, где деформации за счет введения примеси внедрения велики и анизотропны, переход водорода из *t* - р в о - р происходит при малых концентрациях внедренного атома /18,22/.

В случае не плотноупакованных структур локальные искапения вокруг примесного атома много меньше и быстро убявают практически до нуля уже во второй координационной сфере. Поэтому, например, в системе Ti - 0 - H водород докализуется в о - р только начиная с концентраций кислорода 4 ат.% < с 8 ат.% /4/, когда, по всей видимости, деформационные поля от отдельных атомов внедрения (в системе Ti - 0 - H направленные главным образом вдоль осн С /5/) начинают перекрываться. Это ведет, во-первых, к упорядочению по кислороду и, во-вторых, к деформационному взаимодействию 0 - H, препятствующему выпадению гидрида.

В системе \mathbb{Z} г – 0 – Н стабилизация \mathscr{A} -фазы происходит, вероятно, также в результате сложения деформационных полей от атомов кислорода при достаточно больших его концентрациях. Однако величина этих деформаций меньше, чем в Ті – 0 – Н, и не носит такой ярко выраженный анизотропный характер /17/, в силу чего водород не переходит из t – р в о – р даже при концентрации кислорода ~27 ат. %.

В заключение авторы приносят искреннюю благодарность А.В.Белушкину, С.И.Брагину и Н.В.Фадеевой за помощь на отдельных этапах работы, Ю.М.Останевичу за полезные обсуждения и интерес к работе и И.Падуреану и Г.Ротареску за предоставление гидрида циркония.

ЛИТЕРАТУРА

2

1

- I. Magerl A., Rush J.J., Rowe J.M., Richter D., Wipf H. Phys. Rev. B, 1983, v.27, No.2, p.927-934.
- 2. Морозов С.И., Данилкин С.А., Сумин В.В. ФІТ, 1984, т. 26, в. 3, с. 909-911.
- Морозов С.И., Сумин В.В., Белушкин А.В., Натканец И. ФТТ, 1985, т. 27, в. 9, с. 3197-3199.
- 4. Белушкин А.В., Морозов С.И., Натканец И., Сумин В.В. Сообщения ОИЯИ РІ4-86-4І, Дубна, 1986.
- Yamaguchi S., Hiraga K., Hirabayashi M. J. Phys. Soc. Jap., 1970, v.28, No.4, p.1014-1023.
- 6. Понятовский Е.Г., Башкин И.О., Дегтярева В.Д., Ращупкин В.И., Баркалов О.И., Аксенов Ю.А. ФТТ, 1985, т. 27, в. II, с. 3446.
- 7. Колесников А.И., Федотов В.К., Натканец И., Хабрыло С., Бешкин И.О., Понятовский Е.Г. Письма в ЖЭТФ, 1986, т. 44, в. 8, с. 396.

4.

- Meyer J.D., Stritzker B. Physics of Transition Metals, 1981 (Inst. Phys. Conf., Ser.55), p.591.
- 9. Данилкин С.А., Сумин В.В., Минаев В.П. ФТТ, 1986, т. 28, в. 9, с. 2843.
- Иорозов С.И., Данилкин С.А., Сумин В.В. ФТТ, 1983, т. 25,
 в. 10, с. 3194.

- II. Mukawa S., Kajitani T., Hirabayashi M. J. Less-Comm. Met., 1984, v.103, No.1, p.19.
- Белушкин А.В., Бисковеану И., Крэчун К.Н., Натканец И., Пэдуреану И., Ротареску Г. Сообщения ОИЯИ РІ4-84-243, Дубна, 1984.
- Hirabayashi M., Yamaguchi S., Asano H., Hiraga K. Reine und Angew. Metall. Enzeldr., 1974, v.24, p.266-302.
- 14. Балука Г., Белушкин А.В., Брагин С.И., Залески Т., Ишмухаметов М.З.,Натканец И.,Олеярчик В.,Павелчик Я. Сообщения ОИЯИ РІЗ-84-242, Дубна, 1984.
- Козлов Ж.А., Лисичкин Ю.В., Пэдуреану И., Рапеану С., Ротареску Г., Семенов В.А. Сообщения ОИЯИ, РЗ-85-805, Дубна, 1985.
- I6. Hashimoto S., Iwasaki H., Ogawa S., Yamaguchi S., Hirabayashi M. J. Appl. Cryst., 1974, v.7, p.67.
- I7. Laciana C.E., Pedraza A.J., Savino E.G. Phys. Stat. Sol. (a), 1978, v.45, p.315.
- I8. Carstanjen H.-D. Phys. Stat. Sol. (a), 1980, v.59, p.13.
- Гуревич И.И., Тарасов Л.В. Физика нейтронов низких энергий.
 М.: "Наука", 1965.
- Гидриды металлов (под ред. В. Моллера, Д. Блэкледта и Дж. Либовица). М.: Атомиздат, 1973.
- 2I. Ross D.K., Martin P.F., Oates W.A., Khoda-Bakhsh R. Z. Phys. Chem. N.F., 1979, v.114, p.221
- Ozawa K., Yamaguchi S., Fujino Y., Yoshinari O., Koiwa M., Hirabayashi M. Nucl. Instr. Meth., 1978, v.149, No.1-3, p.405.
- 23. Ells C.E., McQuillan A.D. J. Inst. Met., 1956, v.85, p.89.
- 24. Magerl A., Rush J.J., Rowe J.M. Phys. Rev. B, 1986, v.33, p.2093.
- 25. Дубовский О.А. ФТТ, 1985, т.27, в.I, с.295.

Рукопись поступила в издательский отдел 30 декабря 1986 года.

Крэчун К.Н. и др. P14-86-857 Изучение локальных колебаний водорода в твердых растворах Zr-O методом неупругого рассеяния нейтронов

Динамика внедренных атомов водорода и кислорода в цирконии исследовалась при температуре 293 и 80 К и различных концентрациях примесных атомов. Энергия колебания водорода в твердом растворе $\text{ZrO}_{0.25}\text{H}_{0.09}$ ћw = 141 мэВ близка к энергии колебаний водорода в б-фазе гидрида циркония (ћw = 138 мэВ), изменявшегося в адекватных условиях. В образце с малым содержанием кислорода $\text{ZrO}_{0.03}$ H_{0.01} энергия колебаний водорода практически совпадает с положением максимума оптической полосы гидрида циркония. Предполагается, что, как и в системе Ti - 0 -H, при малом содержании кислорода в Zr - 0 - H не происходит полного подавления выпадения гидрида. Приводятся данные по структурному анализу сплавов ZrO_{0.37} и ZrO_{0.37} D_{0.1}.

Работа выполнена в Лаборатории нейтронной физики ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1986

Перевод авторов

Kraciun K.N. et al. P14-86-857 Study of the Localized Vibrations of the Hydrogen in Solid Solution Zr-O by Inelastic Neutron Scattering Method

The dynamics of the hydrogen and oxygen interstitial impurities has been investigated by neutron inelastic scattering measurements at 293 and 80 K temperatures for different concentrations of impurities. The energy of hydrogen vibrations observed in solid solution $\text{ZrO}_{0.25}\text{H}_{0.09}$ fw \approx 141 meV is close to δ -zirconium hydride optic mode energy measured under the same conditions. The energy of the hydrogen vibrations in the small oxygen-concentrated sample $\text{ZrO}_{0.03}\text{H}_{0.01}$ is practically equal to zirconium hydride optic peak maximum position. It is assumed, that as in Ti - 0 - H system at small oxygen concentration, in Zr - 0 - H system the total prevent precvipitation into the hydride phase does not occur. The results of neutron diffraction on $\text{ZrO}_{0.37}$ and $\text{ZrO}_{0.37}\text{D}_{0.1}$ samples are presented too.

The investigation has been performed at the Laboratory of Neutron Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1986