

P14-86-540

1986

Я.Вонсицки, А.М.Гуревич*, В.Н.Еропкин*, Я.Майер, И.Натканец, Ю.В.Тележенко*, В.Г.Хоменко*

НИЗКОТЕМПЕРАТУРНАЯ ТЕПЛОЕМКОСТЬ И ФОНОННЫЕ СПЕКТРЫ 4,4⁻-ДИФТОРДИФЕНИЛА

Направлено в журнал "Acta Physica Polonica"

*Физико-технический институт низких температур АН УССР, Харьков

Введение

Ранее нами были проведены исследования структуры и динамики решетки 4,4-дифтордифенила (ДФД) при фиксированных температурах - I20 и 5К соответственно /I/.

Основная цель настоящей работы состояла в изучении температурной зависимости теплоемкости и ее интерпретации на основе спектральных карактеристик, полученных в /I/. Измерения $C_{\rm P}(\top)$ для ДФД были ограничены интервалом температур 4,2 – 100 К, в котором основной вклад в теплоемкость органического молекулярного кристалла дают внешние колебания. В указанном интервале температур были проведены дополнительные измерения плотности фононных состояний и дифракции нейтронов для ДФД.

Это позволило рассмотреть влияние температуры на особенности динамики ДФД. В обсуждении проводится сравнение с аналогичными данными для изоструктурного кристалла дифенила.

I. Теплоемкость ДФД в области температур 4,2 - IOO К

Измерения теплоемкости поликристаллического ДФД в области температур 4,2 – 100 К проведены методом адиабатической калориметрии на установке, описанной ранее /2/. Перед измерениями образец очищался сублимацией в вакууме. Для контроля чистоты и однородности образца на микрокалориметре ДСМ-2М была снята кривая плавления. На кривой при t = 88°C зафиксирован один острый максимум, что свидетельствует об однофазности системы.

Образец загружался в медный калориметр, внутренняя поверхность которого покрыта полимеризованным лаком. Загрузка и герметизация калориметра осуществлялись в боксе в атмосфере газообразного Не. Масса образца $m_o = 6,836$ г (или 0,0359 моль). Соотношение вкладов теплоемкости образца к суммарной теплоемкости системы образец – калориметр составляет около 76% для T = 10К и 43% для T = 60К. Для измерения температуры использованы калиброванные гермениевый (ТСГ-I, $R_o = 80$ Ом) и платиновый (ТСПН-2В, $R_o = 49,825$ Ом) термометр составляет составниевый термометр использованся от 4,2 до 15К, платиновый – выше 13,8К.

Соъсябненный институт аксоных исследования БИС и

1

Время установления теплового равновесия с ванной при охлаждении от комнатной температуры до азотной составило около 4 часов, при охлаждении от азотной до гелиевой температур – около 2 часов. Время установления теплового равновесия в ходе измерений для температур меньше 50К – 15-20 мин., при Т = 79К – около 50 мин.

Измерения проводились в нескольких сериях. Полученные результаты собраны в таблице I, а на рис. I представлена зависимость С_р (Т). Теплоемкость монотонно меняется с температурой и имеет стандартный "сигмоидный" вид до ~ 48К, выше наблядается целый ряд особенностей.

В первой серии измерения проводились непрерывно с шагом $\Delta T = 0,7 - I$ К в диапазоне температур от I4 до 72К. До начала измерений образец был охлажден и выдержан при температуре 4,2К, а затем подогрет до начальной температуры измерения в данной серии. Диапазон температур от 4,2 по I5К был исследован в серии 5. В связи с наблюдаемым сильным разбросом экспериментальных точек первой серии в области температур выше ~ 50К, вторая серия измерений проводилась в диапазоне температур от 5I до 60К ($\Delta T = 0,7 - I$ K). Образец при этом не охлаждался ниже начальной температуры. Полученные в этой серии значения теплоемкости оказались выше значений в первой серии, причем разница превышает экспериментальную ошибку.

Третья серия измерений проводилась в диапазоне температур от 45 до 82К ($\Delta T = 0,5 - 0,6$ К). Сбразец при этом охлаждался и выдерживался при T = 25 К. Результать этой серии соответствуют результатам первой серии (отличие лишь в разбросе экспериментальных точек). Отсюда можно предположить, что в области температур 50-80 К теплоемкость зависит от термической предистории образца.

Две серии (4-я и 6-я) в интервале 78 - 100 К измерялись с одинаковой исходной температурой T = 78К (время выдерживания при температуре жидкого азота около 3 часов).

В результате весь интервал $\top = 48$ – 100 К можно охарактеризовать как область разного вида особенностей в теплоемкости. В интервале $\top = 48$ – 76 К наблюдается большой резброс экспериментальных значений теплоемкости, который существенно превышает погрешность измерений. В интервале температур от 48 до 60К этот разброс зависит от тепловой предистории образца. В области температур от 78 до 85К наблюдалось существенное увеличение времени распределения тепла по образцу, что приводит к значительному разбросу экспериментальных точек. Помимо этого, в данном интервале температур можно выделить два острых максимума при 80,2 и 84К (рис.1).

<u>Таблица I</u> Теплоемкость ДФД, Т в К, С_р в Дж/К-моль.

Т	С _Р	Т	С _Р	T	Ср	T	С _Р
cej	рия I	45,462	48,54	54,221	56,77	66,080	65,79
14,372	8,63	45,710	49,48	54,955	56,56	66,802	65, II
15,140	9,36	46,391	49,37	55,675	58,10	67,580	65,62
15,844	10,23	47,151	50,00	56,378	57,83	68,408	66,48
16,577	II,25	47,984	50,95	57,188	59, 28	69,195	66,25
17,329	12,20	48,891	51 , 6I	58,097	59,80	70,028	67,70
18,714	14, II	49,772	53, 17	58,990	59,94	70,941	67,81
19,477	15,32	50,630	52,64	сери	ιя З́.	71,840	69,71
20,239	16,49	51,480	52,80	45,354	48,46	72,785	68,93
21,019	17,58	52,33	53,40	45,957	49,15	73,83I	69,30
21,816	18,79	53,346	53,65	46,549	49,55	74,920	70,06
22,590	20,16	54,286	54,54	47,130	51,03	75,999	70,30
23,311	21,18	55,2II	55,56	47,701	50,60	77,067	71,31
24,013	20,78	56,109	56 , 2I	48,815	50,20	78,124	71,87
24,871	23,66	56,986	58,II	48,96I	51,91	79,169	73 . 51
25,624	25,09	57,839	59,57	49,410	51 , 85	80,184	82,11
27,094	27,42	58,672	60,74	50,077	52,50	81,087	74,52
28,642	29,74	59,400	60,04	51,357	5I 85	81,849	78 , 16
29,360	30,79	60,010	60,06	52,023	53,27	82,562	71,67
30,040	31,62	60,617	60,17	52,677	53,28	сери	я 4
30,463	32,22	61,306	62,75	53,314	53,97	77,950	76,40
31,241	33,41	62,091	64,II	54,021	54,41	78,368	73,11
31,988	34,24	62,865	6I,88	54,793	55,00	78,846	72,46
32,818	34,87	63,734	65,07	55,55I	55,88	79,384	70,95
33,727	36,15	64,685	65,12	56,297	57,03	79,953	85,68
34,602	37,27	65,601	64,59	57,558	59,60	80,593	76,90
35,443	38,04	66,509	65,57	58,050	59,30	81,222	72,47
36,350	39,35	67,408	66,30	58,749	58,80	81,844	78,22
37,314	39,92	68,34I	65,53	59 . 441	59,37	82,517	70,68
38,240	41,00	69,428	67,44	60,121	60,38	83,242	74,91
39,138	42,21	70,453	68,15	60,792	60,77	84,657	77.04
40,004	43,46	71,468	6 9,78	61,456	61,63	85,353	75,77
40,844	44,25	серия	12 ′′	62,112	61,28	87,093	76,83
41,661	45,03	51,105	54,44	62,761	62,97	86,876	77.32
42,453	45,88	51,900	55,35	63,401	63,64	87,651	75,79
43,942	47,39	52,694	55,77	64,034	63,88	88,416	78,99
44,675	47.80	53,474	54.7I	64,721	65,40	89.172	78.71

-3

Таблица I (продолжение)

T	Ср	Т	С _Р	Т	С _Р	Т	С _Р	
89.92I	79.43	cepi	ия 5	11,791	5,00	83,467	77,14	
90,663	80,36	4,696	0,32	12,273	5,5I	84,063	81,48	
91.396	80.II	5,480	0,52	12,754	6,20	84,665	73,42	
92,125	79.73	5,998	0,69	13,226	6,75	85,318	74 , 6I	
93,565	81 . 16	6,508	0,91	13,664	7,18	86,058	76 , I4	
94.316	82,83	7.071	1,17	14,067	7,67	86,886	76,85	
95,083	80,67	7,759	I,50	14,471	8,14	87,752	77, IS	
95.849	8I.7I	8,333	I,88	14,896	8,44			
96,624	84,05	8,842	.2,24	серия	1 6			
97 446	84,70	9,460	2,74	81,125	77,77			
98 .30 I	82,82	I0 . I56	3,34	81,657	69,13			
99.145	85 6I	10,779	3,96	82,158	75,85			
99,976	90,24	11,305	4,61	82,235	69,13			

2. Результаты нейтронных измерений

Спектры неупругого некогерентного рассеяния нейтронов (ННРН) для поликристаллического порошка ДФД измерены при температурах I2O, 85, 75 и 44 К на спектрометре КДСОГ-М^{/З/} на реакторе ИЕР-2 ЛНФ ОИЯИ. Для анализа энергии рассеянных на образце нейтронов использовался охлаждаемый азотом бериллиевый фильтр и расположенный за ним цинковый анализатор. Алкминиевая кассета размером I6OxI8O мм и толщиной I мм с образцом помещалась в гелиевом крисстате. Измерение и контроль температуры осуществлялись платиновым термометром сопротивления. Спектри ННРН измерялись одновременно для четырех углов рассеяния от 80⁰ до I40⁰ с шагом 20⁰. Полученные спектры нормированы на счет монитора, внятен фон от крисстата с пустой кассетой и проведено суммирование по всем углам рассеяния.

На рис.2 показаны времяпролетные спектры ННРН от порошка ДФД, полученные при температурах 44, 75, 85 и I20 К. Они были переведены во взвешенную функцию плотности фононных состояний с использованием формулы однофононного рассеяния ⁴⁴. Полученные результаты показаны на рис.3. Из приведенных данных видно, что с ростом температуры наблюдается обычное смягчение и уширение всех полос спектра. Особенно сильно размывается полоса в диапазоне частот IOO-I40 см⁻¹. В области температур 78-84 К, где наблюдалась аномалия в теплоемкости, спектр колебаний ДФД почти не меняется.

Одновременно с измерениями спектров ННРН проводились измерения дифракции нейтронов для углов рассеяния 30°, 50°, 70° и 90°. Полученные результаты нормированы на спектр падающих нейтронов и вычтен некогерентный фон.

Во всем исследованном нами диапазоне температур в спектрах дифранции нейтронов наблюдаются только сдвиги в положениях рефлексов, обусловленные тепловым расширением решетки. Отсюда получена температурная зависимость параметров моноклинной элементарной ячейки ДФД. Параметры α , b, c и β определены по II независимым рефлексам с последующим уточнением МНК. Полученные результаты показаны на рис.4 совместно с полученными нами ранее параметрами элементарной ячейки ДФД при температурах 5 и 295К $^{/5/}$. Добавочно представлены также данные, полученные из рассеяния рентгеновских лучей на монокристалле ДФД $^{/1,6/}$. Как видно из приведенных данных, угол моноклинности β меняется плавно с температурой, а параметр cпочти от нее не зависит. Характер температурной зависимости параметров α и b меняется в области температур 50-70 K, что может коррелировать с аномалией в теплоемкости.

5

З. Расчет теплоемкости

Расчеты теплоемкости проведены в гармоническом приближении стандартным образом /7/:

$$C_{v}(T)/R = \int E\left(\frac{\pi v}{kT}\right) g(v) dv , \qquad (I)$$

где R - универсальная газовая постоянная, а

Рис.4. Зависимость

ной ячейки ДФД от

параметров элементар-

температуры (• - нейт-

ронные данные, о , , данные из работы / ,

× - денные из работы /6/).

 $\mathsf{E}\left(\frac{\hbar\nu}{kT}\right) = \frac{x^2 e^{x}}{(1-e^{x})^2}$

- функция Эйнштейна, где $x = \frac{\hbar v}{kT}$, \hbar - постоянная Планка, k - постоянная Больцмана. Программы расчета термодинамических функций описаны и использовались ранее /8/.

6

Теплоемкость, рассчитанная по теоретическому спектру /1/ и экспериментальная, пересчитанная в $C_V(T)$ с помощью эмпирического уравнения Нернста-Линдемана /9/:

$$C_{v} = C_{p} \left(1 - 0.0214 \frac{T}{T_{\pi n}} C_{p} \right),$$
 (2)

где $T_{\Pi/\Pi}$ – температура плавления, представлены на рис.5. Видно, что в области до 30К рассчитанные значения существенно превылают экспериментальные, а выше 30К наблюдается обратная картина. Анализ вкладов в суммарную теплоемкость от различных полос спектра показал, что ниже 30К основной вклад в теплоемкость вносит непрерывная часть спектра ($\gamma = 0$ -IIO см^{-I}, 7 степеней свободы на молекулу). Две ниэкочастотные оптические моды, расположенные в диапазоне частот от I20 до I60 см^{-I}, существенно влияют на ход расчетной кривой $C_V(T)$ только выпе 30К. Превыление $C_V^{расч} > C_V^{эксл.}$ свидетельствует о том, что низкочастотная область расчетного спектра недостаточно верно отражает действительный ход $\gamma(\gamma)$.

Таблица 2	Полосы экспериментального спектра 9 ()
	пля 5К. Все частоты в см ⁻¹ . Ор в К.

Номер полосы	Число ветвей	$\overline{\mathbf{v}}$	V _{мин}	VMAKC	Θρ
T	7	63	I	100	9I
2	I	114	IIO	118	164
3	Ī	I 57	151	162	226
4	Ī	291	287	295	419
5	Ī	340	321	360	489
6	· 2	402	383	421	578
7	I	456	452	462	656

В связи с этим предпринята попытка расчета теплоемкости с помощью экспериментального спектра φ (ϑ) для $\top = 5K^{/I/}$. В нем выделено семь основных полос, параметры которых даны в таблице 2. Граничные частоты полос соответствуют 2/3 интенсивности каждого пика. Высоты пиков соответствуют экспериментальной величине Q(v)) в выбранной полосе. Средние частоты 🗸 определялись как первые моменты спектра. Ввиду того, что в экспериментальном спектре существует перекрытие непрерывной его части и низкочастотных оптических полос, рассмотрено три варианта спектра с разным положением граничной частоты – 100, 103 и 106 см⁻¹, Результаты расчета $C_{V}(\top)$ для этих трех вариантов представлены на рис.6 в виде $[(C_{V}^{pacu.} - C_{V}^{skcn.})/C_{V}^{skcn.}] \cdot 100 [\%]$. Превышение рассчитанных значений по сревнению с экспериментальными в области 5 - 20 К довольно сильно зависит от граничной частоты непрерывной области спектра, а именно с увеличением этой частоты результат расчета приближается к экспериментальным данным. Наилучшего совпадения можно достигнуть в случае, если эту частоту принять равной II5 см⁻¹. Анализ вкладов от каждой полосы показывает, что в области 5-20 К поведение теплоемкости определяется только вкладом первой полосы спектра. Вторая и третья полоси дают вклады порядка 1%, начиная с 20 и 30 К соответственно. В целом до 55К поведение и величина теплоемкости определяются первыми тремя полосами спектра. Так как разница теплоемкостей в интервале 30 - 55 К в общем лежит в пределах погрешности измерений и проведенных пересчетов, кажется, что предположение о числе ветвей в первых трех полосах спектра отвечает действительности.

4. Обсуждение результатов

Результаты измерения Ср (Т) для ДФД в области температур 4,2 - 35 К для удобства сравнения с данными по дифенилу /107 представлены в виде зависимости $\Theta_{\rm D}$ от температуры. Пересчет проведен с использованием таблиц дебаевских функций для шести степеней свободы. Результаты сравнительного анализа показаны на рис. 7.

Рассмотрим вначале особенности поведения функции $\Theta_{\rm D}$ (\top) для ДФД. Из приведенных данных видно, что в ней наблюдается две аномалии - размытый минимум около 9К и максимум вблизи 18К. Наличие этих аномалий в ⊕_D (⊤) свидетельствует о невыполнении дебаев-ского закона ⊤³ в области низких температур. Для проверки этого мы проанализировали ход функции плотности фононных состояний в области низких температур.

Из результатов проведенного анализа (рис.8) видно, что G. (ϑ) $\sim \vartheta^2$ в относительно узком интервале частот $\sqrt{18}$ см⁻¹, что соответствует $\Theta_{\rm D} \approx 27$ К. Тогда область выполне-ния T^3 – закона Дебая согласно /II/ ограничена для $T \leqslant \Theta_D / 20 \approx 1.4K$, что значительно ниже предела температур проведенного эксперимента. Из сравнения с $\Theta_{\rm D}$ (\top) изоструктурного кристалла дифенила /10/ видно, что выше 15К - точки пересечения кривых Θ_р (⊤) теплоемкость ДФД увеличивается быстрее, чем

Рис.8. $G_{\mu}(v)/v^2$ для ДФД.

теплоемкость дифенида. Увеличение массы и моментов инерции молекулы при переходе от дифенила к ДФД должно вызывать сдвиг как акустических, так и оптических мод в сторону низких частот. Это приводит к увеличению ниэкочестотной чести плотности фононных состояний и. соответственно, к большим значэниям теплоемкости. Таким образом поведение кривых $\Theta_{\rm p}$ (\top) выше 15К кажется вполне понятным. Наблюдеемое ниже 15К резкое уменьшение $\Theta_{\rm D}$ (op) для дифенила можно трактовать двояким образом. Надо отметить, что похожая картина набладается при сравнении низкотемпературной теплоемкости изоструктурных дифенила и n -терфенила /12/. Кривне Op (T) пересекаются для I2K. Ниже этой температуры теплоемкость n -терфенида уменьшается быстрее, чем теплоемкость дифенила. Авторы работы /12/ объясняют это явление вкладом низкочастотной торсионной моды дифенила.

Мы считаем, что неожиданное увеличение теплоемкости дифенила в области низких температур обусловлено вкладом дополнительных низкочастотных возбуждений, существование которых вызвано несоразмерностью решетки /13/. Если это так, тогда отличное от дифенила поведение Θ_D (\top) можно считать косвенным доказательством отсутствия несоразмерного фазового перехода в ДФД.

Выводы

Проведенные в этой работе исследования и расчеты позволяют сделать следующие выводы:

I) теплоемкость ДФД, рассчитанная на основе экспериментальных спектров плотности фононных состояний, полученных для 5К /I/, дает хорошее согласие с экспериментом;

2) наблюдаемая аномалия в теплоемкости ДФД в диапазоне температур 78 - 84 К, по-видимому, связана с фазовым переходом;

3) отличное от дифенила поведение ⊕_D (⊤) для температур ниже 15К можно считать косвенным доказательством отсутствия несоразмерного фазового перехода в ДФД.

Литература

- I. Белушкин А.В. и др. ОИЯИ, PI4-86-429, Дубна, 1986.
- Алапина А.В., Душечкин Ю.А., Сухаревский Б.Я. Теплофизические свойства веществ и материалов. Издательство стандартов, М., 1976, 9, с.113-125.
- З. Балука Г. и др. ОИЯИ, РІЗ-84-242, Дубна, 1984.
- 4. Бохенков Е.Л., Натканец И., Шека Е.Ф. ЖЭТФ, 1976, 70, с.1027.
- Belushkin A.V. et al. in: Proc. Second International Conference • on Phonon Physics, Budapest, 1985, World Sci. Publ. Co.PTE.Ltd., Singapore.
- 6. Halstead T.K., Spiess H.W., Haeberlen U. Mol. Phys., 1976, 31, p.1569.
- Марадудин А., Монтролл Э., Вейсс Дж. Динамическая теория кристаллической решетки в гарманическом приближении, "Мир", М., 1965.
- 8. Тележенко Ю.В. ФНТ, 1982, т.8, №II, с.1228.
- 9. Nernst W., Lindemann F.A. Z.f.Elektrochim., 1911, 17, p.817.
- IO. Atake T., Saito K., Chihara H. Chem. Lett., 1983, p.493.
- II. Китайгородский А.И., Молекулярные кристаллы, Наука, 1971, Москва. I2. Saito K., Atake T., Chihara H. Chem. Lett., 1984, p.531.
- I3. Cailleau H. et al. Solid State Comm., 1980, 33, p.407.
 - .
 - Рукопись поступила в издательский отдел 4 августа 1986 года.

Вонсицки Я. и др. Низкотемпературная теплоемкость и фононные спектры 4,4'-дифтордифенила

Сообщаются результаты измерений теплоемкости, неупругого некогерентного рассеяния и дифракции нейтронов на кристалле 4,4'-дифтордифенила. Измерения теплоемкости проведены методом адиабатической калориметрии в диапазоне температур от 4,2 до 100 К, в котором основной вклад в теплоемкость органического молекулярного кристалла дают межмолекулярные колебания. На основе спектральных характеристик проводится интерпретация температурной зависимости теплоемкости. Приведено сравнение результатов с аналогичными данными для изоструктурного кристалла дифенила.

P14-86-540

P14-86-540

Работа выполнена в Лаборатории нейтронной физики ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1986

Перевод О.С.Виноградовой

1

H

Wasicki J. et al. Low-Temperature Heat Capacity and 4,4'- Difluorobiphenyl Phonon Spectra

Heat capacity, inelastic incoherent neutron scattering, and neutron diffraction experiments were performed for 4,4' difluorobiphenyl. The heat capacity was measured between 4.2 K and 100 K by the adiabatic calorimetry technique. Whith in this temperature range the heat capacity of an organic molecular crystal is mainly due to molecular vibrations. Further interpretation of temperature dependence of the heat capacity is based on spectral characteristics of the compound. The results are finally compared with those of isostructural crystalline biphenyl.

The investigation has been performed at the Laboratory of Neutron Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1986