

P14-85-507

В.Ю.Беззаботнов, Л.Главата, И.Лабски, Ю.М.Останевич, И.Плештил

МАЛОУГЛОВОЕ РАССЕЯНИЕ В РАСТВОРАХ ПОЛИЭЛЕКТРОЛИТОВ. РАЗМЕРЫ ЦЕНЕЙ ПОЛИМЕТАКРИЛОВОЙ КИСЛОТЫ В БЕССОЛЕВЫХ РАСТВОРАХ

Направлено в журнал Polymer

Институт макромолекулярной химии АН ЧССР, Прага

1985

Введение

Эксперименты по малоугловому рассеянию нейтронов и рентгеновских лучей в растворах полиэлектролитов неизменно обнаруживают на кривых рассеяния одиночный широкий максимум. Иногда он интерпретируется с помощью моделей /1-4/. Такие модели обычно предполагают (явно или неявно), что макроионы обладают некоторой определенной конформацией и некоторой регулярной упорядоченностью в пространстве. Последние исследования '5-7', однако, указывают, что с экспериментом согласуется и изотропная модель Де-Жена '8', которая не пользуется представлениями об упорядочении макромолекул или их экстремальной конформации. В этой связи представляется важным выполнить прямое экспериментальное определение формфактора одиночного макроиона. Такое исследование не только дает сведения о конформации одиночного макроиона, но и позволяет изучать корреляции между различными макроионами.

Виллиамс и др. ^{/9/} показали, что формфактор макроиона можно найти из эксперимента по малоугловому рассеянию нейтронов, если в качестве рассеивателя брать подходящую смесь протонированных и дейтерированных макромолекул при достаточно высокой общей концектрации. Позже этот метод был обобщен в работах Акцасу ^{/10/} и Бекум ^{/11/}.

Интенсивность, когерентно расселиная несжимаемам раствором обычных (H) и дейтерированных (D) макромолекул, может быть записана в виде /10,11/

 $I(h) = (a_3 - a_N)^2 c_3 (I - c_3) P(h) + (a_p - a_o)^2 S(h)$, (1) где функции рассеяния P(h) и S(h) отражают внутримолекулирную интерференцию и мехмолекулярную интерференцию соответственно; $h = (4\pi/\lambda) \sin \Theta$ – модуль вектора рассеяния (λ – дляна рассеиваемой волны, 2Θ – угол рассеяния); a_3 , a_N – когерентные амплитуды рассеяния дейтерированного и протонированного мономерного звена; a_0 – амплитуда рассеяния объема растворителя, равного паринальному объему мономерного звена; $a_p = C_3 a_3 + (I - C_3) a_N$ – средняя амплитуда рассеяния полимерной смеси; C_3 – мольная доля дейтерированных мономеров. Выбирая a_0 или C_3 так, чтоби $a_p = a_0$, можно устранить второе слагаемое в (1) и измерить, таким обравом, только одночастичную функцию рассеяния P(h).

Уравнение (I) и описанный путь являются точными, если *H*-и *D*полимеры идентичны, за исключениел только изотенного состава. Практически это условие никогда не выполняется точно. Однако уже имеется положительный опыт, показывающий, что этот подход успешно применим и при умеренном различии молекулярных весов *H*-и D-полимеров. Тангари и др. /12/, исследуя твердый полистирол, состоящий из *H*-и D- цепей, смогли определить структурный фактор индивидуальной цепи при отношении молекулярных весов M_W/M_W в интервале 0,3 + 1,9.

В нашей статье приводятся результать исследований умеренно концентрированных растворов полиметакрилловой кислоты в отсутствие солей. Найдены структурный фактор одиночной цепи, радиус инерции макроиона и их зависимость от степени нейтрализации.

Эксперимент

Образцы. Нами были использованы обычная полиметакриловая кислота (M_w^{H} = 23000, индекс полидисперсности $u = M_w/M_n - 1$ = I.2) и её пейтерированный гомолог (Mw = 19000, 4 = 1.5). Все растворы готовились в тяжелой воде (Д, О), в качестве противонона использовался Ма . Растворы, содержавшие смеси Н- и Д- форм. готовились так, чтобы средние плотности амплитуды рассеяния полимера и растворителя были одинаковыми ($Q_{\rho} = Q_{0}$). Необходимая доля дейтерированных полимеров С зависит от стспени нейтрализации В и вычислялась с использованием парциальных мольных объемов неионизированной ПМК $V_{nMK} = 59.3 \text{ см}^3$ (моль мономера) / 13/1 и онизированной $V_{nMK} = 39.6 \text{ см}^3$ (моль мономера) / 14/. Учитывалась также и конденсация противоионов. Использованные значения Сэ менялись от 0,68 (В =0) до 0,29 (B = I). Суммарная концентрация полимера составляла 0,46 мономер-моль/литр или 0.04 г/см3. Для этих растворов мы ожидали. что рассеянная интенсивность будет прямо пропорциональна среднему структурному фактору одного макроиона. Для полностью нейтрализованного раствора (B = I), кроме того, была исследована зависимость этих характеристик от общей концентрации полимера и доли меченых полимо-HOB.

<u>Малоугловое рассеяние</u>. Измерения рассеяния нейтронов проводились на спектрометре малоуглового рассеяния /15/ на импульсном реакторе ИБР-2 /16/ Объединенного института ядерных исследований в Дубне. Расстояние образец-детектор составляло II,I3 м, первичный пучок был коллимирован до диаметра 24 мм на образце. В этих условиях набладаемый диапазон векторов рассеяния составлял 0,015 + 0,2 Å⁻¹, средний ток тепловых нейтронов на образце был 2·10⁷ н/с. Раствор находился в кварцевой кивете толщиной 2 мм. Некогерентное рассеяние от образца учитывалось путем измерения рассеяния от смеси H_2O/D_2O , содержащей такое же количество протонов, как и исследуемый раствор. Для каждого образца (раствора или растворителя) накапливались два вида данных: I) рассеяние только от образца и 2) рассеяние от образца и ванадиевого стандартного рассеивателя, помещаемого в пучок меж-

BACKBER GETRADBAUER

2

ду образцом и детектором. Такой набор данных позволял простым путем учитывать эффективность детектора и пропускание образца, а также нормализовать измеренные интенсивности на падающий спектр и переводить их в абсолютные единицы (см⁻¹).

Результаты и обсуждение

Для того чтобы выяснить, в какой мере форма кривых рассеяния чувствительна к составу полимерной смеси, для полностью нейтрализованного раствора была выполнена вариация C_{D} (рис.1).

Рис. І. Кривые малоутлового рассеяния нейтронов от смесей (H) и (D) – гомологов полиметакриловой кислоты (противоион Na, B = I) в D O при различных значениях доли дейтерированной фракции C. При C. = 0,29 средняя плотность амплитуды рассеяния полимеров совпадает с аналогичной плотностью растворителя, и кривая рассеяния воспроизводит структурный фактор одиночного макроиона.

Кривые рассеяния для $C_{2} = 0$ и $C_{2} = 1$ обнаруживали хорошо известный максимум при $h \simeq 0, I A^{-I}$. В диапазоне $C_{2} = 0, 2 + 0, 7$ кривая расссяния монотонно спадает с ростом h, как и ожидается для функции рассеяния одиночного макроиона. Этот удивительный результат полностью согласуется с выражением (I). Более детальный анализ показывает, что при $0, I \leq C_{2} \leq 0, 7$ радиус инерции не меняется более, чем на 3%, по сравнению с значением при точной компенсации $Q_{\rho} = Q_{\rho} (C_{2}=0, 29)$.

Условия нашего эксперимента в некоторых отношениях отклоняются от идеальных. Макромолекулы не монодисперсны, а молекулярице веса обычных и меченых полимеров не совпадают вполне точно (M_w / M_w = 1,2). Кроме того, область Гиньє (hR < I) в данных условиях содержит мало экспериментальных точек. В связи с этими обстоятельствами, для описания экспериментальных данных мы использовали корректированную функцию Дебая /17/:

$$P(x) = 2[x-1+(1+ux)^{-1/u}]/(1+u)/x^{2}, \qquad (2)$$

rge $x = h^{2}R_{z}^{2}/(1+2u), \quad u = Mw/Mn^{-1};$

 R_z связан с радиусом инерции R_w цепи с молекулярным весом M_w с помощью соотношения /18/

$$= R_{w}^{2} (1+2u)/(1+u) .$$
(3)

Формула (2) получена для гауссовых цепей с распределением молекулярного веса по Шульцу. Однако в области малых *h* (*hR* < 4) кривне рассеяния возмущенных и невозмущенных цепей совпадают /Т9/. Мы также полагаем, что функция Дебая может достаточно хорошо описать результаты рассеяния в полиэлектролитах.

Индекс полидисперсности И подсчитывался независимо для каждой смеси и оставался постоянным при отыскании остальных параметров в (2). В таблице приведены найденные значения при различных степенях нейтрализации, а на рис. 2 показаны некоторые экспериментальные кривые и их описание с помощью (2).

Рис.2. Кривые рассеяния для смесей протонированной и дейтерированной полиметакрилловой кислоты в D20 и описывающая их функция Дебая (сплошная кривая, ур.2).

4	ß =0.	C =0,04 г/см ³ ,	Rz=44,7 + 0,5 A
	ß =Ⅰ,	C =0,04 r/cm ³ ,	Rz=75,0 + 1,3 Å
Δ	ß =I,	с =0,02 г/см ³ ,	$R_z = 7I \pm 4$ Å
0	_ B = I.	C =0,01 r/cm ³ ,	Rz=70 + 8 Å.

В области О < β < 0,5 R_z возрастает с увеличением β . Это разрыхление макромолекулы является результатом электростатического взаимодействия между одноименно заряженными сегментами. Постоянство R_z в области $\beta > 0,5$ объясняется конденсацией противоионов, при которой плотность заряда вдоль цепи полииона остается постоянной.

На рис.2 приведены кривые рассеяния для натриевой соли полиметакриловой кислоты (β =I), полученные при разных концентрациях. В диапазоне 0,0I ÷ 0,04 г/см³ не наблюдается заметной зависимости Rz от концентрации. Этот результат отличается от данных Моун и др. /20/. которые, исследуя растворы немеченной ПМК с Ми = 13000, нашли концентрационную зависимость вида *R* ~ 1/с^{0,3}. Более того. после коррекции на полидисперсность и различия в молекулярных весах, наши значения радиуса инерции оказываются на 20-40% меньше, чем в работе Моун и др.

Сравнение наблюдаемого радиуса инерции с радиусом инерции полностью растянутой цепи (~ 200 Å) показывает, что даже при наибольпей плотности заряда конформация полииона остается далекой от полностью растянутой цепи.

В расширение полиионов вклад могут вносить как дальнодействующие, так и короткодействующие силы. Можно определить следующие три коэффициента расширения:

$d_{s} = R_{o}(\beta)/R_{o}(\beta=0),$	(4a)
$d_{L} = R_{W}(B) / R_{o}(B).$	(46)

$$d_{T} = R_{W}(\beta)/R_{0}(\beta=0), \qquad (4B)$$

где Rw и Ro относятся к возмущенному и невозмущенному радиусам инерции соответственно. Коэффициенты Д и Д описывают расширение, возникающее за счет короткодействия (S) и дальнодействия (L) соответственно, а dr=ds.d, - полный коэффициент расширения. Радиус *R*o соответствует размеру гауссового клубка с заданными полной длиной цепи и длиной персистенции. Последняя определяется короткодействукщими силами. Я и характеризует реально осуществляющийся размер клубка, который, в присутствии дальнодействующих сил отталкивания, будет превышать Ro . Радиус инерции невозмущенного клубка Ro может быть найден по формуле /21

$$R_{0}^{2} = \frac{L_{p} \cdot L}{3} \cdot \left[1 - \frac{3}{N} + \frac{6}{N^{2}} - \frac{6}{N^{3}} \left(1 - \frac{6}{N} \right) \right], \qquad (5)$$

Z - длина персистенции, Z - контурная длина цепи и где N=L/Lp .

Значения длины персистенции Lp (таблица) найдены из эксперимента по положению точки "/ , которая отделяет участки кривой рассеяния, характерные для клубка (область малых h), и для стерж-ня (область больших h) /22/:

 $L_{p} = 2.3/h^{*}$. $L \rho = 2,3 / \hbar$ (6) Значения R_0 получены из (5,6) с применением L = 590 Å, соответствующего Mw = 21000 (подходящее приближение для использованных (H)

и (Д) смесей), и находятся в хорошем согласии с значениями, полученными из измерений вязкости /23-25/.

Значения R и получены из экспериментальных R введением поправки на полидисперсность. Внесение этой поправки, справедливой для гауссовых цепей, в нашем случае не должно приводить к ошибке более 2%. Значения R., R. и 3-х коэффициентов расширения содержатся в таблице, а рис. 3 и 4 показывают соответствующие зависимости от В

0.5

de(•) полимонов ПМК от степени нейтрализации.

Для неионизированных цепей (В =0) все три коэффициента расширения L близки к I, что позволяет считать роль дальнодействующих сил пренебрежимо малой. Соответственно, наблюдаемое расширение при В ≠0 следует связывать, в основном, с электростатическим взаимодействием ионизированных мономеров в цепи. В области B<0,2 ds=1, « I и, следовательно, только дальнодействующие силы отвечают за расширение. Этот результат легко понять, если учесть, что малым В соответствуют низкие плотности заряда, и, соответственно, расстояние между заряженными мономерами вдоль цепи больше длины персистенции. Электростатические взаимодействия вдоль цепи при этом оказываются слабыми и не возмущают локальной конформации цепи, хотя, конечно, влияют на общий размер клубка, если цепь достаточно гибкая (удаленные вдоль цепи звенья имеют возможность солижаться).

При В > 0,2 коэффициент L s нарастает с увеличением В и достигает предельного значения 1,2 при В ≈ 0,5. В области В>0,5 коэффициенты расширения не зависят от В, что связано с конденсацией противоионов. В этой области плотность заряда на единицу длины полимона остается постоянной, и, следовательно, не меняются и электростатические взаимодействия.

Заключение

Размеры полимонов полиметакриловой кислоты увеличиваются с увеличением степени нейтрализации β в интервале 0 < β < 0,5 и остаются постоянными при β > 0,5. В исследованном диапазоне концентраций (c = 0.0I - 0.04) не наблюдается зависимости радиуса инерции полииона от концентрации. Значения радиуса инерции всегда остаются много меньше, чем для полностью растянутой цепи.

Расширение полиионов связано с появлением электрических зарядов на цепи. При низких степенях нейтрализации (β≤0,2) расширение связано только с далеко разнесенными зарядами (эффект исключенного объема).

Структурный фактор одиночного макроиона, при его исследовании с помощью смесей нормальных и дейтерированных полимеров, слабо чувствителен к отклонениям от идеального соотношения (\mathcal{H}) и (\mathcal{D}) компонентов.

Таблица

Зависимость характеристик одиночного полииона от степени нейтрализации

В	Rz,Å	Rw, Å	Lp, Å	Ro, Å	ds	de	di	
0,0	44,7	39,8	7,9	38,6	I,00	I,03	I,03	
0,I	47,3	42,2	7,8	38,4	0,99	I,IO	I,09	
0,2	54,I	48,2	7,8	38,4	0,99	I,26	I,25	
0,3	58,2	51,9	8,8	40,8	I,06	I,27	I,34	
0,4	71,2	63,3	10,2	43,9	I,14	T,44	I,64	
0,6	76,0	67,7	II,9	47,4	I,23	I,43	I,75	
0,8	76,4	68,I	12,0	47,6	I,23	I,43	I,76	
Ι,Ο	75,0	66,8	12,2	48,0	I,24	I,39	I,73	

Rz - получен из экспериментальных данных с помощью формулы 2.

Rw - вычислен из Rz с помощью формулы 3.

Lp - длина персистенции.

- *Ro* невозмущенный радиус инерции, полученный из ф.5 с ∠ =590 Å (*M* = 21000).
- коэффициенты расширения (см. ф. 4а-4в).

Литература

- 1. Cottonn and Moann M.J.Phys. Paris 1976, 37, L-75.
- Rinaudo, M. and Domard, A. J.Polymer Sci., Polymer Letters Ed-1977, 15, 411.
- 3. Plestil, J., Mikes, J. and J. and Dusek, K. Acta Polymerica 1979, 30, 29.
- Ise, N., Okubo, T., Kunugi, S., Matsuoka, H., Yamamoto, K. and Yshii Y. J.Chem.Phys. 1984, <u>81</u>, 3294.
- Hayter, J., Jannink, G., Brochhard-Wyart, F. and de Cennes, P.-G. J.Phys. Paris, 1980, <u>41</u>, L-451.
- Benmouna, M., Weil, G., Benoit, H. and Akcasu A.Z. J.Phys.Paris 1982, 43, 1679.
- /. Koyama, R. Physica 1983, 120B, 418.
- de Gennes, P.G.Pincus, P., Velasco, R.M. and Brochard, F. J.Phys.Paris 1976, <u>37</u>, 1461.
- 9. Williams, C.E., Nierlich, M., Cotton, J.P., Jannink, G., Boue, F., Daoud, M., Farnoux, B., Picot, C., de Gennes, P.-G., Rinaudo, M., Moan, M. and Wolf, C. J.Polymer Sci. Polymer Letters Ed., 1979, <u>17</u>, 379.
- Akcasu, A.Z., Summerfield, G.C., Jahshan, S.N., Han, C.C., Kim, Y.C. and Yu, H.J. Polymer Sci., Polym.Phys.Ed. 1980, 18, 863.
- 11. Benoit, H., Picot, C. and Benmouna, M. J.Polymer Sci., Polymer. Phys.Ed. 1984, <u>22</u>, 1545.
- Tangari, C., King, J.S. and Summerfield, G.C. Macromolecules 1982, <u>15</u>, 132.
- 13. Tondre, C. and Zana, R. J. Phys. Chem. 1972, 70, 3451.
- 14. Ikegami, A. Biopolymers 1968, 6, 431.
- В.А.Вагов, А.Б.Кунченко, Ю.М.Останевич, И.М.Саламатин. ОИЯИ РІ4-83-898, Дубна, 1983.
- 16. В.Д.Ананьев и др. Атомная энергия, 1984, 57, 227.
- 17. Greschner, G.S. Makromol.Chem. 1973, 170, 203.
- 18. Altgelt, K. and Schulz, G.V. Makromol.Chem. 1960, 36, 209.
- Kirste, R.G. and Oberthur R.C. in "Small-angle X-ray scattering" Glatter, O. and Kratky, O. editors, Academic Press 1982, London.

- Moan, M., Wolff, C., Cotton, J.P. and Ober, R.J. Polymer Sci: Polymer Symposium 1977, 61, 1.
- 21. Benoit, J. and Doty, P. J. Phys. Chem. 1953, 57, 958.
- 22. Heine, S., Kratky, O. and Ropper, J. Makromol. Chem. 1962, 56, 150.
- 23. Davenport, J.N. and Wright, P.V. Polymer 1980, 21, 293.
- 24. Katchalsky, A. and Eisenberg, H. J.Polymer Sci. 1951, 6, 145.
- 25. Noda, I., Tsuge, T. and Nagasawa, M. J.Phys.Chem. 1970, 74, 710.

Рукопись поступила в издательский отдел З июля 1985 года. Беззаботнов В.Ю., Главата Д. и др. Р14-85-507 Малоугловое рассеяние в растворах полиэлектролитов , Размеры цепей полиметакриловой кислоты в бессолевых растворах

Исследованы одночастичная функция рассеяния и радиус инерции молекулы полиметакриловой кислоты /ПНК/ при разных степенях нейтрализации. Сравнение возмущенных и невозмущенных размеров молекулы показывает, что их увеличение, происходящее при нейтрализации, может быть связано только с появлением электрических зарядов на цепи. При низких степенях нейтрализации ($a \le 0,2$) за увеличение размеров молекулы ответственны только дальнодействующие силы, тогда как при больших β включаются и короткодействующие силы.

Работа выполнена в Лаборатории нейтронной физики ОИЯИ.

Препринт Объединенного института ядерных исследования. Дубиа 1985

Перевод авторов

Bezzabotnov V.Yu. et.al. P14-85-507 Small-Angle Scattering by Polyelectrolyte Solutions. Dimensions of poly (Methacrylic Acid) Chains in Salt-Free Solutions

Single-particle scattering function and radius of a poly (methacrylic acid) (PMA) molecule have been obtained as a function of the degree of neutralization. Comparison of perturbed and unperturbed dimensions indicates that the expansion of PMA can be ascribed to the presence of charges alone. At a low degree of neutralization ($\alpha \leq 0.2$), only long-range interactions contribute to the expansion. At higher $\alpha^{1}s$, both long-range and shortrange interactions are operative.

The investigation has been performed at the Laboratory of Neutron Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1985