

Объединенный институт ядерных исследований дубна

P14-84-571

1984

Я.Бразевич, Э.Бразевич, Г.М.Осетинский, М.Пайек, И.Плосконка

СЕЧЕНИЕ ВЫХОДА ХАРАКТЕРИСТИЧЕСКОГО РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ L-ОБОЛОЧКИ ПРИ ВОЗБУЖДЕНИИ ИОНАМИ ⁴ Не

Направлено в "Journal of Physics B"

*Педагогический университет, г.Кельце, ПНР

ВВЕДЕНИЕ

В последнее время проводились интенсивные исследования сечения ионизации внутренних оболочек атомов при возбуждении их легкими и тяжелыми ионами. Для сильно асимметричных систем, для которых $Z_1 << Z_2$, где Z_1 и Z_2 - атомные номера падающего иона и атома мишени, сечение ионизации внутренних оболочек может быть описано в формализме борновского приближения плоских волн (PWBA). Более строгое описание может быть получено при учете эффектов изменения энергии связи электрона и поляризации оболочки, описываемых в приближении возмущенного стационарного состояния (PSS) с учетом релятивистского движения электронов (R) и отклонения траектории падающего иона от прямолинейной в кулоновском поле ядра, известном как теория CPSSR $^{/1/}$.

В случае учета потери энергии (Е) падающей частицы во время столкновения с атомом эта теория известна как теория $ECPSSR^{/2/}$. Систематические сравнения экспериментальных данных по сечениям ионизации К-оболочки с расчетами по теории CPSSR проведено Паулом в работах ^{/3, 4/}, где показано, что результаты совпадают в пределах 60%.

Для сечения ионизации L -оболочки столь систематические сравнения теории и эксперимента не проводились. Определенную работу в этом направлении провели Мукояма и Саркади /5-8/. Они показали, что сравнение экспериментальных данных с теорией RPWBA-BC /5-8/ /теория, в которой используется волновая функция Дирака для электронов атомов мишени с поправками на энергию связи, поляризацию и отклонение в кулоновском поле/ дает не столь хорошее согласие, как для К-оболочки.

Большинство экспериментальных сечений ионизации для L_{1} - и L_{3} оболочек в пределах 60% согласуются с расчетными, в то время как для L_{2} -оболочки эти расхождения существенно больше. Учитывая столь большое расхождение экспериментальных и теоретических результатов, представляет определенный интерес продолжить эти исследования. Этой задаче посвящена настоящая работа, в которой представлены результаты измерения сечения выхода характеристического рентгеновского излучения /ХРИ/ при возбуждении L-оболочки девяти элементов от Ag до Bi ионами ⁴ Не в интервале энергий 1,5+3,8 МэВ.

Полученные экспериментальные результаты для сечений ионизации $L_a - , L_\beta - , L_{\gamma} - , L_{\ell}$ -переходов и сечение выхода ХРИ для всей L -оболочки (σ_L), так же как и отношение L_a / L_{β} , L_a / L_{γ} сравнивались с расчетными их значениями по теории ECPSSR.

При проведении расчетов учитывалось влияние на величины сечения ионизации анизотропии рентгеновского излучения, появляющейся вследствие эффекта ориентирования L₃-оболочки в процессе столкновений ^{/9,10}/. Полученные результаты сравнивались с результатами других авторов.

1. МЕТОДИКА ЭКСПЕРИМЕНТА

Подробное описание методики измерений проведено в/11/ Укажем на основные особенности эксперимента. Ионный пучок от ускорителя коллимировался 4 диафрагмами диаметром 2 мм и попадал на мишень. установленную под углом 45° по отношению к пучку. Число частиц, падающих на мишень, определялось по измерению заряда, переносимого пучком на эту мишень. Мишени изготовлялись путем распыления в вакууме на кремниевую подложку толщиной 0,2 мм и имели следующую толщину в мкг/см²: Ag - 20,1; Sn - 11,5; Sb - 66,2; Te-84,0; Ho - 133,0; Ta - 7,4; W- 240; Pt - 19,0; Bi - 78,0. Эти величины определялись по измерению выхода упругого рассеяния ионов 4 Не с помощью поверхностно-барьерного детектора, установленного под углом 135° по отношению к падающему пучку. Выход характеристического рентгеновского излучения измерялся Si(Li)детектором, который располагался под углом 90° по отношению к направлению пучка. На пути от мишени к детектору рентгеновское излучение проходит окошко из металлизированного майлара толщиной 25 мкм, слой воздуха толщиной 5 мм и бериллиевое окошко детектора толщиной 25 мкм. Импульсы от детектора через предусилитель и усилитель направлялись на многоканальный анализатор импульсов. Усилитель обеспечивает стабильность нулевого уровня на выходе и индикации импульсов самоналожений. Блок-схема регистрации ХРИ имеет счетчик рабочего времени, который суммирует мертвое время детектирования в предусилителе, усилителе и многоканальном анализаторе импульсов, и автоматически выдает рабочее время счета на световое табло этого прибора.

Энергетическое разрешение спектрометра, измеренное на линии 6,4 кзВ ⁵⁷ Со,составляет 220 зВ. Эффективность счета детектором определялась по измерению выхода рентгеновского излучения от 241 Ат и измерению выхода ХРИ на мишенях, число атомов которых известно. Это число определялось по упругому рассеянию ⁴ Не в той же геометрии, в которой проводилось измерение выхода характеристического рентгеновского излучения. Сечение выхода ХРИ, необходимое для расчета эффективности, бралось из усреднения /по методу наименьших квадратов/ сечений, опубликованных ранее/¹²/.Полученные записи по эффективности счета в интервале энергий 1,5÷30 кзВ аппроксимировались по методу наименьших квадратов функцией вида $\ln \epsilon = \sum_{I=1}^{M} A(I) E^{I-1}$, где М – число параметров, A(I) – коэффициенты полинома, E – энергия рентгеновского излучения.

Observed and the off off off a first

SHA

RECORDER STORES

E

Полученная кривая справедлива при заданной и неизменной геометрии опыта и учитывает эффективность, расстояние между мишенью и детектором, толщину выходного и входного окошек мишени.

2. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

Измерялся выход характеристического рентгеновского излучения на Ag, Sn, Sb, Te, Ho, Ta, W, Pt и Bi при возбуждении указанных мишеней пучком ионов ⁴ Не с энергией 1,50; 2,00; 2,48; 2,98; 3,20; 3,49; 3,70; 3,80 МэВ. Обработка энергетических спектров этого излучения проводилась на ЭВМ PDP11/70 по программе "ACTIV"/¹³/,которая определяла площади спектров ХРИ для L_{a} -, L_{β} -, L_{y} -, L_{f} -переходов с учетом фона.

В предположении изотропии выхода рентгеновского излучения сечение выхода этого излучения определялось по формуле

$$\overline{\sigma}_{L_{i}} = \frac{4\pi N_{L_{i}}}{N_{P}N_{T}\epsilon_{i}c_{i}\Omega}, \qquad (1)$$

где $N_{L\,i}$ - площадь энергетического спектра для L_i -перехода, в которую внесена поправка на мертвое время детектирования, N_p число ионов ⁴He, падающих на мишень, определяемое из измерений тока пучка, N_T - число атомов мишени в ат/см², полученное из измерения обратного рассеяния ионов ⁴He под углом 135°, ϵ_i , Ω - эффективность и телесный угол детектора, c_i - поправка на поглощение ХРИ на пути от мишени к детектору.

Полное сечение выхода ХРИ L-оболочки определялось путем суммирования измеренных сечений для отдельных L_a -, L_{β} -, L_{γ} -, L_{ℓ} -переходов. В величину измеряемого сечения вводилась поправка на потерю энергии частицы в мишени, а также на ослабление характеристического рентгеновского излучения /ХРИ/ в этой мишени. В предположении, что потеря энергии ΔE падающей частицы в мишени толщиной Δx мала по сравнению с энергией падающей частицы E_0 , и что сечение выхода характеристического рентгеновского излучения $\sigma(E)$ и тормозные способности S(E) для этой мишени при торможении ионов ⁴Не изменяются по формулам

$$\sigma(\mathbf{E}) = \sigma(\mathbf{E}_0) \left(\frac{\mathbf{E}}{\mathbf{E}_0}\right)^{\alpha} \qquad \mathsf{N} \quad \mathbf{S}(\mathbf{E}) = \mathbf{S}(\mathbf{E}_0) \left(\frac{\mathbf{E}}{\mathbf{E}_0}\right)^{\beta}$$

для случая, когда ослабление ХРИ в мишени мало, можно получить следующую формулу:

$$\sigma_{L_i} = \overline{\sigma}_{L_i} \left[1 - \frac{1}{2} (\alpha - \beta) \frac{\Delta E}{E_0} - \frac{1}{2} \mu \Delta x \right]^{-1} ,$$

где σ_{L_i} - исправленное значение сечения, $\overline{\sigma_{L_i}}$ - сечение, рассчитываемое по формуле /1/, μ - массовый коэффициент ослабления /14/, α , β - коэффициенты, полученные из аппроксимации прямой линией зависимости $\ln \sigma(E)$ и $\ln S(E)$ от $\ln E$.

В расчетах использовались сечения, полученные по теории ECPSSR^{/1,2/}, а данные для S(E) взяты из таблиц тормозных способностей Нортклиффа и Шиллинга^{/15/}. Как показали расчеты, величина поправки не превышает 4%. Полная квадратичная ошибка в определении выхода характеристического рентгеновского излучения для всех переходов не превышает 10%, а для их отношений - 11÷12%. Эти ошибки включают:

- 1. Ошибку в определении числа атомов мишени 4%.
- 2. Определение площади энергетического спектра характеристического рентгеновского излучения <3%.
- 3. Определение числа частиц, падающих на мишень 1,5%.
- 4. Определение эффективности детектирования 7%.

Как указывалось выше, при вычислении сечений предполагалось наличие изотропии в излучении ХРИ. Однако при взаимодействии падающего иона ⁴ Не с L_3 -подоболочкой появляется анизотропия излучения, соответствующая этому переходу и приводящая к добавочным ошибкам в определении полного сечения ионизации. Расчеты, приведенные с использованием результатов ^{/9,10/}, показали, что эти ошибки для $L_a - и$ L_β -переходов незначительны /меньше 1%/. Для L_ℓ -перехода эта ошибка составляет - 8%. Однако при определении полного сечения выхода ХРИ L -оболочки, состоящего из суммы $L_a - , L_\beta - , L_\gamma - , L_\ell$ -переходов, эффектом анизотропии можно пренебречь из-за малого вклада L_ℓ -перехода в полное сечение.

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЯ

В таблице представлены экспериментальные значения сечения выхода характеристического рентгеновского излучения для L_a -, L_{β} -, L_{γ} -переходов, а также полное сечение σ_{L} для всей L-оболочки. На рис.1, в целях сравнения, приведены экспериментальные данные σ_{L} и теоретические значения σ_{L}^{th} , рассчитанные по теории ECPSSR. Как уже указывалось, расчеты по этой теории дают сечения ионизации, и переход к сечениям выхода для L_a -, L_{β} -, L_{γ} -переходов и σ_{L}^{th} производился по формулам работы Тавара и др. $^{15/.}$ Необходимые для расчетов значения выходов флюоресценции и коэффициентов Костера-Кронинга были взяты из таблиц Краузе $^{16/.}$ Значения радиационных ширин переходов - из работы Скофильда $^{/17/.}$ При вычислении сечений ионизации по теории ECPSSR, для всех элементов за исключением Pt и Bi, использовались таблицы Чой и др. $^{/23/.}$ Расчеты для Pt и Bi проводились с помощью таблиц Бенка и Кропфа $^{/24/.}$, хотя при использовании их нельзя учитывать релятивистский эффект $^{/4/.}$. Для оценки допускаемой нами при этом погрешности было проведено сравнение результатов расчетов сечений, полученных с использование обеих таблиц для элементов, наТаблица

Экспериментальные значения сечения выхода характеристического рентгеновского излучения /в барнах/ при возбуждении L-оболочки ионами ⁴Не и их отношения к теоретическим значениям, рассчитанным по теории ECPSSR

N	E(Mae)	SL.	R.	5	S,	GL,	R	5	2
A9-47	2.009 2.477 3.2 3.2	80.3 131.8 190.6 229.1	0.78 0.75 0.75	40.9 65.3 1205.9 121.59	0.87 0.87 0.83 0.83	3.47 5.87 12.2	0.92	124.6 203.0 306.1 362.8	0.77
Sn-50	1.5 2.477 2.987 3.491	25.8 71.8 192.3 270.9	11.218 2218 2218 2218 2218	13.1 168.5 168.5 168.6	1.29 1.29 1.31 1.31 1.32 1.33	1.20 5.07 1.3.47 21.44 21.44	1.59 1.59 1.59	40.0 1160.0 3198.3 458.9	1110 1110 1110 1110 110 110 110 110 110
56-51	2.477 2.477 2.287 2.477 2.2009	28.28 167.11 167.11 167.11 167.11	HHHHH 1000 1000 1000 1000 1000 1000 100	153.5 101.3 101.3 101.3 103.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5	00000000000000000000000000000000000000	100.500 110.50 112.50	11.11 1.11 1.28 1.11 1.28 1.11 1.11 1.11	45.6 94.3 246.5 246.5 280.6 334.0	нн 1001 1001 1001 1001
Te-52	22.009 33.287 3477 3.491	221 222 222 221 222 22 22 22 22 22 22 22		1296.488.55 1296.16 1201.12 12	8855588 0011111 0011111	11.000 00.00 00.00 00.00 00 00 00 00 00 00	1111128 33888 34 35 35 35 35 35 35 35 35 35 35 35 35 35	83.0 83.0 222.0 3270.5 327.0	
						2			

теоретическим. значений сечений к экспериментальных отношение a) Таблица /продолжение/

.

æ	00000000000000000000000000000000000000	Н 12 00 84 87 87	0.79	00000094 00000094 000000094	0.000
ម	3,45 3,45 3,88 17,38 3,88 17,38 3,88 17,38 3,86 3,86 3,86 3,87 3,87 3,87 3,87 3,87 3,87 3,87 3,87	27160038 2160038 271600	11.6 11.6 21.9 21.9	2008 2008 2008 2008 2008 2008 2008 2008	0.431 222 3.1122 6.79
æ	х80390 ннонон	11 085 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0	00000000000000000000000000000000000000	99010000000000000000000000000000000000	023001133 01101
E.	0.19 0.44 0.84 11.14 128 22.74	1000028 006758 0084	0000H	00000000000000000000000000000000000000	881688 00000
æ	000000 9167 9167 9167 9167 9167 9167 9167 9167	91010 9100000000	0000 94 90 90 90 90 90 90	00000000000000000000000000000000000000	П 16 00004 8850 8850 8850 8850 8850 8850 885
5.	122-93 122-93 180-93 180-93 180-93 180-93 180-93 180-93 180-93 180-93 190-93 100-93 1000000000000000000000000000000000000	1 81 55 61 61 61 61	2.42 5.74 7.38	ООНУ 600 400 500 400 500 400 500 440 500 50	2100015 21000000000000000000000000000000
(a)	0.91 0.92 0.78 0.92 0.92 0.92	BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB	0.77	2480100000000000000000000000000000000000	0.84 0.77 0.49 67
قي ا	1.93 16.14 322.99 33.99 33.99	3. 15 5. 90 17. 4 17. 4 17. 4	4. II 10.3 13.4 13.4	8465 846 846 846 846 846 846 846 846 846 846	0.24 1.430 4.04 0433
(8¢H) I	1.5 2.2477 3.491 3.891 3.891	2.009 2.477 3.491 3.8	2.477 2.987 3.491 3.8	1.5 2.009 2.477 2.477 2.477 3.2 3.2 3.2 491 3.7	I 5 22 477 22 477 3 491
N	Ho-67	Ta-73	W -74	Pt-78	Bi -83

6

7

- отношение экспериментальных значений сечений к теоретическим.

a) R

Рис.1. Энергетическая зависимость сечения выхода характеристического рентгеновского излучения L -оболочки при возбуждении ионами ⁴He. о - данные настоящей работы; A - данные Бауэра и др.^{/18}/; A - данные Торнтона и др.¹⁹/; ■ - данные Комарека²⁰/; ■ - данные Чанга и др.²¹/ Сплошная кривая - расчеты по теории ECPSSR.

ходящихся в районе Pt и Bi /45 < Z₂ < 74/. Расчет показал, что в интервале исследуемых энергий это расхождение не превыша-10° ет 4%.

Заметим, что теоретические расчеты сечений содержат ряд погрешностей, связанных с погрешностями в определении выхода флюо-

ресценции /3÷15%/ ^{/16}, коэффициентов Костер-Кронинга /5÷20%/ ^{/16}/ и погрешностей в определении относительной ширины переходов /2÷8%/ ^{/17}/. Как видно из таблицы, ошибки в определении расчетных значений сечения выхода ХРИ в интервале $50 \le Z_2 \le 80$ с ростом атомного номера исследуемого элемента уменьшаются, составляя для σ_{La} , σ_{Lg} , $\sigma_{L\gamma}$ 25-15% для σ_{L} - 12-4%, а для отношений сечений - 50-30%.

Полученные нами сечения σ_L для Ag, Ta, Bi находятся в хорошем согласии с результатами Бауэра и др. $^{/18}$, Торнтона и др. $^{/19/}$, Комарека $^{/20/}$, Чанга $^{/21/}$. Для Sn они систематически на 40% выше результатов Торнтона и др. $^{/19/}$ и Комарека $^{/20/}$, которые на 30% ниже расчетных значений, проведенных по теории ECPSSR. Для W при энергии E = 3,0 МэВ они на 20% меньше данных Комарека $^{/20/}$, причем эти расхождения с ростом энергии ионов ⁴ Не уменьшаются.

Полученные нами результаты по сечениям для $L_a - , L_{\beta} - , L_{\gamma} -$ переходов для всех элементов, исключая Bi, в пределах 30% совпадают с расчетными по теории ECPSSR. Для Bi эти расхождения составляют - 50% для L_a и 35% для остальных переходов. Для сечения L_{γ} -переходов для Sn и Te эти расхождения достигают 65% и 40% соответственно. На рис.2 и 3 приведены значения измеренных нами отношений сечений L_a/L_{β} и L_a/L_{γ} . На этих же рисунках приведены для сравнения результаты расчета этих соотношений по теории ECPSSR. Для отношения L_a/L_{β} наши результаты в пределах 6% совпадают с расчетными. Исключением являются результаты для Pt и Bi, где экспериментальные данные на 30% ниже

Рис.2. Энергетическая зависимость отношений сечений $\sigma_L / \sigma_L \beta$ при возбуждении ионами ⁴Не. О – данные настоящей работы. Сплошная кривая – расчеты по теории ECPSSR.

Рис.3. Энергетическая зависимость отношений сечений σ_L/σ_L , при возбуждении ионами ⁴ Не^{α} О - данные настоящей работы. Сплошная кривая – расчеты по теории ECPSSR.

нием данных для Ta, хуже. Для Ag, Sn, Sb, Ho и W экспериментальные данные систематически на $15\div20\%$ ниже теоретических. Для Pt на 25% ниже, а для Bi - на $30\div35\%$. Для отношения L_{α}/L_{γ} экспериментальные данные хорошо согласуются с расчетными.

В заключение отметим, что согласие экспериментальных данных с расчетными по теории ECPSSR при возбуждении ионами ⁴ Не лучше, чем при протонном ^{/22/}.

Авторы благодарны группе эксплуатации электростатического ускорителя ОИЯИ за обеспечение хорошей его работы при проведении эксперимента, а также сотрудникам ЛНФ ОИЯИ А.Пурэв и Лю Зай Ик за помощь в работе.

ЛИТЕРАТУРА

Brandt W., Lapicki G. Phys.Rev., 1979, A20, p.465.
Brandt W., Lapicki G. Phys.Rev., 1981, A23, p.1717.

9

- 3. Paul H. At.Data and Nucl.Data Tables, 1979, 24, p.243.
- 4. Paul H. Nucl.Instr. and Meth., 1982, 192, p.11.
- Mukoyama T., Sarkadi L. Nucl.Instr. and Meth., 1981, 190, p.619.
- 6. Mukoyama T., Sarkadi L. Nucl.Instr. and Meth., 1982, 197, p.585.
- 7. Mukoyama T., Sarkadi L. Nucl.Instr. and Meth., 1983, 205, p.341.
- Mukoyama T., Sarkadi L. Nucl.Instr. and Meth., 1983, 211, p.252.
- 9. Jitschin W. et al. J.Phys., 1979, B12, p.4077.
- 10. Jitschin W. et al. J.Phys., 1983, B16, p.1417.
- 11. Braziewicz E. et al. JINR, 18-81-503, Dubna, 1981.
- Gardner R.K., Gray T.J. At.Data and Nucl.Data Tables, 1978, 21, p.515.
- 13. Zlokazov V.B. JINR, P10-82-105, Dubna, 1982.
- 14. Montenegro E.C., Baptista G.B. At.Data and Nucl.Data Tables, 1978, 22, p.131.
- Northcliffe L.C., Shilling R.F. Nucl.Data Tables, 1970, A7, p.233.
- 16. Krause M.O. J.Phys.Chem.Ret.Data, 1979, 8, p.307.
- 17. Scofield J.H. At.Data and Nucl.Data Tables, 1974, 14, p.121.
- 18. Bauer C. et al. Z.Phys., 1981, A303, p.13.
- 19. Thornton S.T., McKnight R.H., Kartowics R.R. Phys.Rev., 1974, A10, p.219.
- 20. Komarek P. Acta Phys.Austr., 1968, 27, p.369.
- 21. Chang C.N., Morgan J.F., Blatt S.L. Phys.Rev., 1975, A11, p.607.
- 22. Braziewicz J. et al. J.Phys., 1984, 17, p.1589.
- 23. Choi B.H., Merzbacher E., Khandelwal G.S. At.Data, 1973, 5, p.291.
- 24. Benka O., Kropf A. At.Data and Nucl.Data Tables, 1978, 22, p.219.

Бразевич Я. и др. P14-84-571 Сечение выхода характеристического рентгеновского излучения L-оболочки при возбуждении ионами ⁴Не

На тонких мишенях Ag, Sn, Sb, Te, Ho, Ta, W, Pt и Bi измерены энергетические зависимости сечений выхода характеристического рентгеновского излучения для L_a -, L_{β} -, L_{p} -, L_{f} -переходов и для всей L-оболочки при возбуждении ионами ⁴ He в интервале энергий 1,5÷3,8 МэВ. Полученные результаты сравнивались с расчетами, проведенными по теории ECPSSR ^{/1, 2/}, которая описывает кулоновскую ионизацию в приближении PWBA с учетом поправок на изменение энергии связи, поляризацию оболочек и релятивистский эффект для электронов атомов мишени. Учитывается влияние отклонения в кулоновском поле, а также потеря энергии падающего иона во время столкновения с атомом мишени.

Работа выполнена в Лаборатории нейтронной физики ОИЯИ. Препринт Объединенного института ядерных исследований. Дубна 1984

Перевод авторов

D14_94_571

Рукопись поступила в издательский отдел 29 августа 1984 года.