

Объединенный институт ядерных исследований дубна

P14-84-429

1984

Э.Бразевич, Я.Бразевич, В.Ф.Волков, С.А.Герасимов, Лю Зай Ик, Г.М.Осетинский, А.Пурэв

СЕЧЕНИЕ ВОЗБУЖДЕНИЯ ХАРАКТЕРИСТИЧЕСКОГО РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ ПРИ ВОЗБУЖДЕНИИ ПРОТОНАМИ И ИОНАМИ ⁴ Не ДЛЯ ЭЛЕМЕНТОВ С Z В ИНТЕРВАЛЕ 22 ≤ Z ≤ 83

Направлено в журнал "Атомная энергия"

ВВЕДЕНИЕ

Настоящая работа посвящена определению сечения возбуждения характеристического рентгеновского излучения (σ_8) при бомбардировке ряда элементов пучком протонов и ионов ⁴Не с энергией 1,5⁺3,8 МэВ. Сечения определялись для элементов, для которых в указанном интервале энергий данные по σ_8 отсутствуют или требуют уточнения.

Измерения проводились на тонких мишенях. В этом случае величина σ, определялась по формуле

1. Выход ХРИ і линии / α , β и т.д./ в серии / К или L /, обозначаемый нами в дальнейшем $Y_{i,8}$, определялся по площади энергетического спектра ХРИ, получаемого на многоканальном анализаторе импульсов. Величина этой площади определялась по программе ОИЯИ "Activ" на ЭВМ БЭСМ-6.

2. Число частиц, падающих на мишень (N_p) , определялось по измерению тока пучка интегратором тока. Погрешность в определении тока в рабочем диапазоне 10^{-8} - 10^{-9} А - не более 1-1,5%.

3. Число атомов мишени (N_M)определялось по измерению упругого рассеяния ионов ⁴Не под углом 135° в лабораторной системе координат в той же геометрии и при той же энергии ускоренных

1

ионов, при которых проводилось измерение выхода ХРИ. Упругое рассеяние принималось резерфордовским. В исследуемом интервале энергий на ядрах с Z > 14 такое предположение вполне справед-ливо $^{/1/}$.

4. Эффективность детектирования $\epsilon_{i,s}$ определялась по измерению выхода $Y_{i,s}^{CT}$ ХРИ из стандартных мишеней, число атомов которых известно. Расчет проводился по формуле

 $\epsilon_{i,s} = \frac{Y_{i,s}^{CT}}{N_p^{CT} N_M^{CT} \sigma_{i,s}^{CT}}, \qquad (2/$

где число атомов в стандартных мишенях в ат /см² определялось по измерению упругого рассеяния ионов ⁴Не с энергией 2-3 МэВ в той же геометрии мишени, при которой проводились измерения сечений. Величина $\sigma_{\rm g}^{\rm CT}$ считывалась со специальных таблиц, составленных нами ^{/2/} в результате усреднения всех опубликованных данных по $\sigma = f(E)$. Необходимость составления таких усредненных таблиц связана с тем, что опубликованные данные для одних и тех же элементов и энергий, но определенных различными авторами, имеют иногда расхождение, превышающее в два-три и более раз экспериментальные ошибки измерения, и трудно в связи с этим отдать предпочтение тому или иному методу их определения. Усреднение этих данных проводилось методом наименьших квадратов на ЭВМ СDC-6500 по программе ОИЯИ FUMILI полиномом вида

 $\sigma(E) = \sum_{k=1}^{m} A_k E^{k-1}$, где A - коэффициент полинома (k-1) степени. Более подробное построение этих таблиц описано в работе /2/.

Средняя квадратичная ошибка в определении $\epsilon_{i,s}$ не превышает 7%. Она слагается из ошибки в определении $Y_{i,s}$ - не более 2%, ошибки определения числа атомов мишени ~4%, измерения N_p - 1,5% и ошибки σ_s^{CT} из таблиц усредненных значений для $\sigma_s = f(Z)|_{E}$ ~ ~5%. Заметим, что выбранный нами метод определения эффективности регистрации ХРИ, базирующийся на усреднении известных табличных значений σ_s , хотя и приводит к несколько завышенным ошибкам в определении ϵ , однако он в значительной степени исключает появление неучитываемых ошибок, которые могут возникнуть при определении этой величины другими методами.

Схема опыта приведена на рис.1. Как видно из рисунка, пучок протонов или ионов ⁴Не от электростатического ускорителя ОИЯИ типа Ван-де-Граафа, пройдя участок ионопровода попадает на многопозиционную мишень, находящуюся в центре камеры измерений. На этом участке пучок формируется четырьмя диафрагмами. Равномерное распределение тока на мишени обеспечивается расфокусировкой в двух взаимно перпендикулярных направлениях с помощью электростатических линз. Мишень изолирована от корпуса и присоединена к интегратору тока. Под углом 90° по отношению к падающему пучку на расстоянии 50 мм от центра мишени камера имеет отверстие, перекрываемое майларовой фольгой толщиной

Рис.1. Схема опыта: 1 - вакуумные затворы; 2 - азотная ловушка; 3 - а-г - коллиматоры; 4 - промежуточная камера; 5 - пластины для модуляции пучка; 6 - насос высокого вакуума; 7 - прибор наблюдений за пучком; 8 - камера ХРИ; 9 - цилиндр Фарадея; 10 - Si детектор; 11 - вентиляция; П - детектор ХРИ; ПУ - предусилитель.

25 мкм. За майларовым окошком установлен Si(Li)-детектор. Импульсы от детектора через предусилитель и усилитель регистрируются многоканальным анализатором импульсов типа "DIDAC".Усилитель обеспечивает стабильность нулевого уровня на выходе и индикацию импульсов самоналожений. Блок-схема регистрации характеристического рентгеновского излучения /ХРИ/ имеет счетчик "живого времени", который суммирует мертвое время детектирования в предусилителе, усилителе и многоканальном анализаторе импульсов и автоматически выдает "живое воемя" счета на световое табло этого прибора. Энергетическое разрешение спектрометра, измеренное на линии 6,4 кэВ от ⁵⁷Со, составляет 220 эВ. В камере под углом 135° установлен кремниевый поверхностно-барьерный детектор, который используется для одновременного измерения упругого рассеяния ионов ⁴Не с измерением выхода характеристического рентгеновского излучения.

2. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

В табл.1 приведены сечения возбуждения ХРИ К- и L-серий при бомбардировке исследуемых элементов пучком протонов с энергией 1,46-3,8 МэВ. Сечение возбуждения для К-серии измерялось для ряда элементов, находящихся в интервале 22 \leq Z \leq 47, для L-серии - в интервале 51 \leq Z \leq 83. В целях проверки правильТаблица 1

5

TET

.

Сечение возбуждения ХРИ для К-и L-серий при бомбардировке элементов протонами в интервале энергий 1,46-3,8 МэВ

		5	E.							3.24				TEN	K'/0T		59,8
			akcn.											TCO O	100,0	120.3	
OBB MaB		121	Ma		•					3.13				TELE	0°201		57,0
	ſ	2	BKCII.	26 00	50'00		TT TR	2-1		2.82							
	ų	- 12/	21							3.02				143 6	D'OFT		54.2
	-		BRCI						4.46								
	507	- 12	2							2.94			1	T38.8			52,2
	e.		AAD 5	30.44	24.50	11 36	IO.43	4.96	4.11	2,40			925.7	T44.6	PO T	1 1 20	49,00
	205	12/ m	2							2,51				118.6			43,6
	e	LUAC	oncut.	26.85						I,93	1	892.4	847.3				
H O I	985	un/2/	387.2		I5.6	5.77		5,52	-	2,18				105.3		2	31,9
0 d L	2	aren	364.5	23.6	I8,9	8,67	7,18	5,55	2,43	I,53		802.8	804.0	99.4	78.2		1.60
	5	N3/2/	298.8	•	I0,4	4,6I	4,20	3,98		I,4I				76,9		0 00	\$0.0
F N A	~	эксп.	285.6	I4,6I	I2,3I	5,39	4,50	3,40	I,69	0,82		676,8	637,6	83,4	59.86	20 00	07.67
HEP	055	N3/2/	219.9	13,7	5,73	3,45	2,52	2,31		0,81		-		52,2		TEO	10°3
e	2,	SKCII.	213.9		7,41	3,20	2,59	1,97	0,86	0,52		506, I2	387,0	52,43	39.73	TE ER	30.01
	46	N3/2/	9.7II	5,53	2,63	1.77	0,85	0,80	0,29	0,27		1		23,9		7 75	21.
	1	SKCII.	89,95	4.85	2.67	1,15	0,94	14.0	0.30	0,20		307,0	272.7	25,92	19, I4	53 6	3
TI	ISMO	re	F	3	Xe	22	ž	2	ba	*		S6	10	1 e	3	ä	5
	218		2	R	3	\$	41	42	\$	47		19	52	73	74	ŝ	3
					"No		"NGX"RNGSOLA										

Таблица 2

-53

⁴He Сечение возбуждения ХРИ для К-и L -серий при бомбардировке элементов ионами в интервале энергий 1,5-3,8 МэВ

.,

Π		131	1.7	3.5	L	0	8				725	Π	22	S	Γ					0			9
	80	M3	147	13,	27.	17.	3,6				0.2		0.1	0,0						30.			8,6
	3	эксп.								0.626	0,552									27.5	21,39		
	6	18/sm	I36,3	127,4	24.9	I5.7	3,68				0,656		0,147	0,058						28.I			16.1
	3,	эксп.					3,05						0, I86			637,8						I4,8	
	3,6	M3/3/	I26,0	0,911	22,9	I4,4	3,36				0,593		0,132	0,054						26,3			7,30
		эксп.					2,86					0.211	0,165			629,2							
B.	16	Na/3/	115,0	109,0	20,8	I3, I	3,00				0,531		0,120	0,049				•		24,4			6,56
B	3,4	skch.	90,5	69,05	16'6I	20,3	2,68	I,48	0,643	0,503	0,4	161.0	0, I43	0,072			452,7	325,0	316.2	21,3	I6,5	I2,4	6,80
⁴ He	2	18/3/	9.69	83,4	I6,I	I0,I	2,15				0,388		0,081	0,035						7.61			4,82
0 B	°,	эксп.	-		I5,5		2,00					0,135	0,113		560.9	467,0	<u> </u>	271,8	261.0			I0,4	
НОИ	2,967	M3/3/	73,2	63,6	13,2	8, I2	1,67				0,303		0,063	0,025						I6,5			3,88
в		эксп.	55,9	4I,I	I2,3I	12,29	I,58	0,816	0,367	0,300	0,232	0.104	0,082	0,039	497.7	5	313,8	238,8	214.0	I5,7	11,3	8,46	3,11
ΡΓM	F	M3/3/	41,6	26,3	7,63	4,48	0,914			0,196	0,15		0.038	0,019						10,0I			2,69
3 H E	2,4	SKCII.	32,6	23, I	6,75	6,55	0,827	0,41	0,19	0, I46	0, II3	0.05	0.039	0,019	262,4		I96,3	158,7	135,8	9,73	6,7I	4,82	2,43
	8	Na/3/	21,5	11.4	3,8I	2,25	0,438	с. С.		0,092	0,066		0.019	0,0087						5,38			I,93
	2,0	SKCIL.	I8,9.	10.7	3,28	3,15	0,397	0,185	0,082	0,062	0,049	0.0196	0.019		189,2	I28.6		7.06	79.6	5,27	3,93	2,60	I,22
	5	N3/3/	8,12	4.45	1,39	0,810	0,127			0,0282	1610.0		0.0035	0,0002						1,75			0,504
	-	KCII.	14.1	1.17	, I6	,962	1,133	,065	0224			0.00404	0.0027		38,8	30.4	39.I2	13,7	38,3			0.893	0,429
TH	THOMORE			Ce 4	8	2 2	3	Rec	2003	NG	No	Pd C	AS.C	5	Pal 6	A	3	3	Te.	ę	3	な	80
	7H2			24	27	53	8	37	40	41	42	46	47	50	46	47	50	51	33	73	74	78	8
			К-серии "Хри"										"NTY" "XPN"										

5

4

ности методики измерений в таблице помещены данные наших измерений на элементах (Ag,Ti,Bi), сечения возбуждения ХРИ которых в исследуемом интервале энергий измерялись ранее другими авторами и хорошо согласуются между собой. В этой же таблице для сравнения приведены данные $\sigma_{\rm g}$, взятые из усредненных значений зависимостей $\sigma_{\rm g} = f(E)|_Z$, опубликованных в $^{/2/}$. Как видно из таблицы, в интервалах энергии, где возможно сравнение, сечения возбуж-дения ХРИ в пределах ошибок согласуются с усредненными литературными данными.

В табл.2 приведены сечения возбуждения ХРИ К-и L-серий при бомбардировке ряда элементов пучком ионов ⁴Нев интервале энергий 1,5-3,8 МэВ. В таблице помещены также данные, взятые из таблиц⁷⁸⁷ и усредненные в интересующем нас интервале энергий методом, указанным ранее.

Значения $\sigma_{\rm g}$ при бомбардировке Co, Se, Ag, Ta рассматриваются нами как подтверждающие правильность принятого метода измерения. Для ряда элементов измерения повторены, поскольку сечения XPИ, опубликованные различными авторами, имеют большое расхождение между собой. Так, например, в таблицах ^{/3/} для сечения возбуждения К-серии XPИ при бомбардировке Cu ионами ⁴He с энергией 2,6 МэВ приведены два значения: 8,68 барн и 4,7 барн; для возбуждения К-серии Cr при энергии E_{4 He} = 2,1 МэВ -13,5 барн и 21,0 барн; при возбуждении L-серии Bi /E_{4 He} = = 3,0 МэВ/ - 5,1 барн и 16,1 барн и т.д.

Средняя квадратичная ошибка при определении сечения во всех измерениях не превышает 10%. Она слагается из ошибки определения выхода ХРИ – не больше 2%. Ошибки определения ϵ – 5-7%, ошибки в определении числа атомов мишени – 4%, ошибки определения числа частиц, падающих на мишень, – 1,5%, ошибки в определении σ из-за ошибок в измерении энергии – 1% /находится из кривой σ = = f(E)/.

3. ОБСУЖДЕНИЕ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ

Сечения возбуждения ХРИ при бомбардировке исследуемых элементов пучком протонов и ионов ⁴Не сравнивались с результатами теоретических расчетов, выполненных в борновском приближении плоских волн /БППВ/ и модели бинарных столкновений /МБС/. Расчеты по указанным теориям дают сечение ионизации, и переход к сечениям возбуждения ХРИ проводился умножением этих величин на величину флюоресцентного выхода и вероятности перехода Костера-Кронига, взятых из работы ^{/4/}. Следует заметить, что описание известных в настоящее время экспериментальных данных по сечениям ионизации К-и L-оболочек в МБС приближении проводилось рядом авторов с использованием для всех подоболочек волновой функции только 1s-состояния ^{/5,6/}. Расчеты сечения в борновском приближении плоских волн /БППВ/ обычно проводились с использованием табличных данных, взятых из $^{7,8/}$, которые содержат функцию $f(\eta, \theta)$, связанную с сечением ионизации σ уравнением вида

$$\sigma = 8\pi Z_1^2 a_0^2 Z_{2s}^{-4} \eta_s^{-1} f(\eta_s, \theta_s),$$

где

$$\theta_{s} = \frac{m_{e}E_{1}}{M_{1}Z_{2s}^{2}R_{\infty}}; \quad \theta_{s} = \frac{n^{2}E_{CB}}{Z_{2s}^{2}R_{\infty}};$$

 Z_1 , M_1 , E_1 – атомный номер, масса и энергия падающей частицы; m_e , E_{CB} – масса и энергия связи электрона в оболочке; a_0 , R_{∞} – борновский радиус и постоянная Ридберга; n – главное квантовое число оболочки; Z_2 – атомный номер атома мишени; θ_s – постоянная экранирования $\theta_s < 1$.

В расчетах предполагается, что экранирование заряда ядра электронами атома можно учесть введением экранированного заряда по правилам Слеттера:

$$Z_{28} = Z_2 - 0,3$$
 для К-оболочки;
 $Z_{28} = Z_2 - 4,15$ для L-оболочки.

Заметим, что этот метод расчета не лишен определенных недостатков, так как, во-первых, выбор $\theta_s < 1$ соответствует отрицательным кинетическим энергиям выбиваемого электрона, рассматривать которые нет убедительных оснований, и, во-вторых, определение эффективного заряда Z_{28} по правилам Слеттера приводит к весьма большим погрешностям. В отличие от указанного метода расчета в нашем случае при расчетах как в МБС, так и в БППВ приближениях использовались 18-, 28-, 2р -волновые функции водородоподобного атома, а экранирование заряда ядра атома мишени учитывалось введением эффективного заряда Z_{28} , определяемого из соотношения

$$E_{CB} = \frac{Z_{2s}^2}{n^2} R_{\infty},$$

где n - главное квантовое число, E_{CB} - экспериментальное значение энергии связи электрона в оболочке.

Поскольку рассмотрение проводилось для водородоподобного атома, результаты теоретических вычислений для каждой отдельной подоболочки как в МБС, так и в БППВ приближениях были представлены в виде масштабного закона

$$\frac{\sigma (n^2 E_{CB})^2}{Z_1^2} = F_{n,\ell} \left(\frac{E_1}{\lambda n^2 E_{CB}} \right); Z_1$$
- заряд налетающего иона.

На рис.2 представлены энергетические зависимости отношений теоретически рассчитанных сечений к экспериментально измеренным сечениям возбуждения ХРИ ($\sigma_{\rm m}/\sigma_{\rm p}$) для К-оболочки некоторых из исследуемых атомов при возбуждении их пучком протонов с энергией 1,5-3,8 МэВ. Данные σ_{π} , используемые при расчете σ_{π}/σ_{2} , рассчитывались в приближении МБС, поскольку, как показал анализ результатов настоящей работы и многочисленных публикаций, экспериментальная точность измерений о, является недостаточной, чтобы установить, какое из приближений /МБС, БППВ или их различные модификации, в том числе предложенная в настоящей работе/ более правильно описывает процесс ионизации атомов протонами. Как видно из рис.2, теоретические расчеты от, в пределах ошибок, совпадают с экспериментальными (σ_т/σ_э ≈1). Аналогичные расчеты $\sigma_{\rm T}/\sigma_{\rm B}$, проведенные для ионизации L-оболочки исследуемых атомов протонами, независимо от метода расчета /в приближении МБС или БППВ/ также приводят к величине, близкой к 1 /результаты на рисунке не показаны/.

Более противоречивая картина наблюдается при расчете $\sigma_{\rm T}$ для ионизации К-оболочки при возбуждении ее ионами ⁴Не. В этом случае, если при возбуждении характеристического рентгеновского излучения L-серии протонами и ионами ⁴Не расчетные значения $\sigma_{\rm T}$ совпадают с экспериментальными, то при ионизации К-оболочки ионами ⁴Не отношение $\sigma_{\rm T}/\sigma_{\rm S}$ значительно отличается от единицы /см. рис.3/. Указанные закономерности можно проследить на рис.4 и рис.5, где для исключения влияния индивидуальных особенностей атомов мишени на процесс взаимодействия их с налетающей частицей проведено усреднение $\sigma_{\rm T}/\sigma_{\rm S} = f(E)$ по атомным но-

мерам Z. На рис. 4 приведены зависимости $(\sigma_{\rm T}/\sigma_{\rm 3})_{\rm CP} = f(E)$ при ионизации К-оболочки исследуемых атомов протонами и ионами ⁴ Не.Верхняя часть рис.4/а/относится к ионизации протонами, нижняя /б/ - к ионизации ионами ⁴He. На рис.5а,б - те же зависимости при ионизации L-оболочки. На рис.4а и 5а видно, что при ионизации К-и L-оболочки протонами и ионизации L-оболочки ионами ⁴Не отношение $\sigma_{\rm T}^{\ /}\sigma_{\rm 3} \approx 1$. Для случая ионизации К-оболоч-ки ионами ⁴Не усредненные значения $(\sigma_{\rm T}^{\ /}\sigma_{\rm 3}^{\ })_{\rm CD}$ значительно больше единицы и возрастают с уменьшением энергии. Причина такого расхождения теоретических значений сечений с экспериментальными при ионизации К-оболочки ионами ⁴Не не совсем ясна, и ее выяснение требует дальнейших экспериментальных и теоретических исследований. Качественно она может быть понята, если принять во внимание отклонение траектории падающей частицы от прямолинейной /предполагаемой в теории БППВ/ в кулоновском поле ядра. При отклонении траектории от прямолинейной увеличивается расстояние наибольшего сближения (d) падающего иона с атомом мишени, которое для иона ⁴Не будет большим, чем для протона. И поскольку радиус L -оболочки в 4 раза больше радиуса К -оболочки, сечение ионизации при увеличении расстояния наибольшего приближения уменьшится для К-оболочки сильнее, чем для L -оболочки /в обсуждении предполагается, что ионизация атома ионами в основном происходит для ионов, приближающихся к ядру мишени

Рис.4. Зависимость $(\sigma_{T} / \sigma_{3})_{CP}$ от энергии налетающего иона при ионизации **К**-оболочки. а/ Ионизация протоном, б/ ионизация ⁴ Не. • – расчет в МБС приближении, **А** – в приближении БШТВ.

Рис.5. Зависимость $(\sigma_{T} / \sigma_{3})_{CP}$ от энергии налетающего иона при ионизации L-оболочки. а/ Ионизация протоном, б/ ионизация ⁴Не, • – расчет в МБСприближении, \blacktriangle – расчет в приближении БШПВ.

на расстояние $d < a_2$, где $a_2 = (n^2 a_0)/Z_2$; a_0^- радиус Бора/. По сравнению с расчетами по БППВ величина сечения ионизации при этом уменьшается с уменьшением энергии падающего иона и увеличением Z_2 , что можно проследить при рассмотрении зависимости, связывающей параметр наибольшего сближения (d) иона с атомом мишени с параметром удара (b):

$$d(b) = d_{\min} \left[1 + \sqrt{1 + \left(\frac{b}{d_{\min}}\right)^2} \right],$$

где $d_{\min} = \frac{-1-2^{\circ}}{2E_1}$ - половинное расстояние наибольшего сближения в центральном столкновении; b - параметр удара; E_1 - энергия иона. Проведенное обсуждение подтверждается результатами, приведенными на рис.46 и рис.3, где видно, что σ_{π}/σ_{2} растет

с увеличением Zp и уменьшением энергии падающего иона.

4. Krause M.O. J.Phys.Chem.Ref.Data, 1979, 8, p.307.
 5. Garcia J.D., Fortner R.J., Kavanagh T.M. Rev.Mod.Phys., 1973, 45, p.111.

 McDaniel F.D., Gray T.J., Gardner R.K. Phys.Rev., 1975, A11, p.1607.

В заключение авторы приносят большую благодарность сотруд-

3. Atomic Data and Nuclear Data Tables, 1976, 17, No.2; Atomic

нику ОИЯИ М.Пайеку за полезные обсуждения.

ЛИТЕРАТУРА

 Rice R., Basbas G., McDaniel F.D. At.Data Nucl. Data Tables, 1977, 20, p.503.

1. Бразевич Э. и др. ОИЯИ, 18-81-503, Дубна, 1981. 2. Бразевич Э. и др. ОИЯИ, Б1-18-81-320, Дубна, 1981.

Data and Nuclear Data Tables, 1978, 21, No.6.

 Choi B.H., Merzbacher E., Khandelwal G.S. At. Data, 1973, 5, p.291.

> Рукопись поступила в издательский отдел 21 июня 1984 года.

11

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

	Труды VI Всесоюзного совещания по ускорителям заря- женных частиц. Дубна, 1978 /2 тома/	7 p. 40 K.
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/	8 p. 00 ĸ.
	Труды УШ Всесоюзного совещания по ускорителям заряженных частиц. Протвино, 1982 /2 тома/	11 p. 40 K.
A11-80-13	Труды рабочего совещания по системам и методам аналитических вычислений на ЗВМ и их применению в теоретической физике, Дубна, 1979	3 p. 50 K.
A2-81-543	Труды VI Международного совещания по проблемам кван- товой теории поля. Алушта, 1981	2 p. 50 K.
A10,11-81-622	Труды Международного совещания по проблемам математи- ческого моделирования в ядерно-физических исследова- ниях. Дубна, 1980	2 р. 50 к.
A17-81-758	Труды II Международного симпозиума по избранным проблемам статистической механики. Дубна, 1981.	5 p. 40 ĸ.
P18-82-117	Труды IV совещания по использованию новых ядерно- физических нетодов для решения научно-технических и народнохозяйственных задач. Дубна, 1981.	3 р. 80 к.
A2-82-568	Труды совещания по исследованиям в области релятивистской ядерной физики. Дубна, 1982.	1 р. 75 к.
A9-82-664	Труды совещания по коллективным методам ускорения. Дубна, 1982.	3 р. 30 к.
ДЗ,4-82-704	Труды IV Международной школы по нейтронной физике. Дубна, 1982.	5 p. 00 ĸ.
A11-83-511	Труды совещания по систенам и методам аналитических вычислений на ЗВМ и их применению в теоретической физике. Дубна, 1982.	2 p. 50 k.
A7-83-644	Труды Международной школы-семинара по физике тяжелых ионов. Алушта, 1983.	6 p. 55 K.
A2,13-83-689	Труды рабочего совещания по проблемам излучения и детектирования гравитационных волн. Дубив, 1983.	2 p. 00 m.
A13-84-63	Трудм XI Международного симпозиуна по ядерной электронике. Братислава, Чехословакия, 1983.	4 p. 50 x.
A2-84-366	Труды 7 Международного совещания по проблеман квантовой теории поля. Алушта, 1984.	4 p. 30 +

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований Бразевич Э. и др. Р14-84-429 Сечение возбуждения характеристического рентгеновского излучения протонами и ионами ⁴Не для элементов с Z в интервале 22 ≤ z ≤ 83 Приведены экспериментальные результаты по определению сечения выхода характеристического рентгеновского излучения /ХРИ/ от K-и L-оболочек при возбуждении различных элементов

пучком протонов и ионов ⁴Не. Исследования проводились на 18 элементах с ², находящимися в интервале 22 $\leq z \leq 83$, в диапазоне энергий 1,5-3,8 МэВ.

Работа выполнена в Лаборатории нейтронной физики ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1984

Перевод О.С.Виноградовой

R

Braziewicz E. et al. P14-84-429 Excitation Cross Section of Characteristic X-Ray Radiation by Protons and ⁴He Ions for Elements with z within $22 \le z \le 83$ Range

The K - and L-shell X-ray production cross sections have been measured for 18 elements with atomic number z within the $22 \le z \le 83$ range using proton and ⁴He ion beams with 1.5 to 3.8 MeV energies.

The investigation has been performed at the Laboratory of Neutron Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1984