

667 9-81

9/2-81 P14-80-674

Л.С.Лесневская, А.П.Симкина

ОПРЕДЕЛЕНИЕ (**∂**T_к/**∂**N₂) ДЛЯ РАЗБАВЛЕННОГО РАСТВОРА КСЕНОН-ЙОД

По теории изоморфизма критических явлений $^{/1/}$ концентрация примеси N $_2$ и область перенормировки критических индексов связаны соотношением

где $\xi^{-1} = \frac{A}{R} \left(\frac{1}{T_k} \frac{\partial T_k}{\partial N_2}\right)^2$, А- коэффициент в зависимости $c_v \sim Ar^{-a}$, R - универсальная газовая постоянная, $r = \frac{T - T_k}{T_k}$, T_k - критическая температура смеси, N_2 - мольная доля растворенного вещества /примеси/.

Для наблюдения перенормировки критических индексов необходимо было подобрать примесь /второй компонент/, сильно меняющую критическую температуру основного вещества /растворителя/. В качестве последнего выбрали ксенон.

В литературе имеются надежные PvT-данные для чистого ксенона $^{/2/}$, но почти отсутствуют сведения о фазовом поведении двойных систем с ксеноном. Мы измерили начальный участок критической кривой системы ксенон-йод в координатах T_{-v-N} для определения производной ($\partial T_k/\partial N_2$). Исходный ксенон по паспорту содержал примеси криптона /0,008%/ и кислорода /0,01%/. Газ очистили от примесей методом протока под вакуумом на установке, изображенной на <u>рис.1</u>. Установка предназначена для очистки газов и заполнения ампулы веществом.

Критическую температуру и температуру фазового перехода ксенона и смеси Хе- Јр определяли визуальным методом Алексеева в стеклянной ампуле высокого давления /8/. Процедура измерений состояла в следующем. В ампулу помещали йод. Перед этим кристаллик йода взвешивали на весах ВЛР-20. Погрешность измерения массы по шкале весов составляет +0,015 мг. Взвешивали пустой бюксик, затем, не выключая арретира весов, - бюксик с кристалликом йода. Подобная процедура взвешивания гарантирует указанную точность. Потом кристаллик быстро переводили в ампулу, закрывали ее вентилем и охлаждали до температуры -30°C. Ампулу подсоединяли к дозировочной установке и вакуумировали в течение 5 минут до остаточного давления 2·10⁻³ мм рт.ст. Затем ампулу заполняли ксеноном из калиброванной колбы переконденсацией при температуре жидкого азота. Количество ксенона /1,7 г/, загруженного в ампулу, определяли взвешиванием с точностью 10^{-3} г. Далее ампулу помещали в водяной термостат, и при перемешивании определяли визуально критическую температуру или

> Объединенный инститя ядерных иссолодован БИБЛИОТЕКА

Рис.1. Установка для очистки газа и заполнения ампул. 1 – баллон с газом; 2 – манометр; 3 – вентиль дросселирующий; 4 – вакуумметр образцовый; 5 – колба калиброванного объема; 6 – образец алюминиевый; 7 – ампула стеклянная; 8 – дьюар; 9 – лампа для измерения вакуума; 10 – ловушка для очистки газа; 11 – колбы, заполняемые газом перед очисткой; 12 – ловушка азотная.

температуру фазового перехода. Водяной термостат снабжен смотровыми окнами, мешалкой, нагревателем и холодильником. Заданную температуру устанавливали комбинацией нагрева и охлаждения. Температуру термостата измеряли метастатическим термометром Бэкмана с точностью $\pm 0,002^{\circ}$ С /в собственной шкале температур/. Термометр откалиброван по платиновой температурной шкале. Привязка к абсолютной шкале составляет $\pm 0,01^{\circ}$ С. Критическая температура ксенона 16,601 $\pm 0,01^{\circ}$ С, что находится в хорошем согласии с данными ^{/2/}

Объем ампулы откалиброван по весу четыреххлористым углеродом, плотность которого определяли пикнометром. Объем ампулы по шести измерениям составляет 1,736+0,03% см³. Точность определения плотности заполнения – +0,07%.

Погрешность в определении веса йода равнялась +1% и +5% для навесок йода 1,4 и 0,3 мг соответственно. Потери йода при откачке замороженной до -30°С ампулы с йодом незначительны, поскольку упругость паров йода при этой температуре – менее 10^{-2} мм рт.ст. $^{\prime 4\prime}$. Поправка на потери йода при откачке не вносится.

Экспериментально установлено, что через 30 мин интенсивного перемешивания кристаллик йода растворяется и в системе устанавливается равновесие.

В бесконечно разбавленных растворах мольный объем смеси Xe-J₂ практически равен мольному объему чистого ксенона. Это позволило определить начальный участок критической кривой смеси, минуя определение пограничных изостер.

Начальный участок критической кривой системы ксенон-йод измерили для семи растворов /табл.1/. Полученные экспериментальные данные приведены на рис.2. Как видно из рисунка, растворимость йода при критической плотности ограничена и критическая кривая системы ксенон-йод разрывается кривой растворимости в первой конечной критической точке /мольная доля йода $N_2 =$ = 0,0003 /. При N₂>0,0003 критические явления идут в присутствии твердой фазы йода /светлые точки/, получается тройная система жидкость - газ - твердое тело.

Из зависимости критической температуры системы ксенон-йод от концентрации йода N_2 имеем

$$\frac{1}{T_k} \frac{\partial T_k}{\partial N_2} = \left(\frac{1}{290} \cdot \frac{0.18}{0.0003}\right)^2 = 4$$

(

<u>Рис.2.</u> Критическая кривая разбавленного раствора ксенон-йод. N₂ – мольная доля йода в ксеноне, T – критическая температура разбавленного раствора.

3

Таблица

₩М° Опыта	Состав раствора	Навеска йода /мг/	Плотность заполнения р/г/см ³ /	Мольная доля йода N ₂	Критическая температура T°C
1 2 3 4 5 6 7 Xe 8 Xe	Хе чистый Хе + J_2 Хе + J_2 Хе + J_2 Хе + J_2 Хе + J_2 Хе + J_2 + J_2 + тв.йод $+ J_{2+}$ тв.йод	- 0,3 0,65 0,925 1,02 1,10 1,45 1,84	1,097 1,074 1,095 1,098 1,101 1,096 1,092 1,092	- 0,84 1,80 2,53 2,78 3,0 3,98 5,03	16,601 16,652 16,705 16,740 16,755 16,773 16,764 16,755

Зависимость критической температуры раствора от состава

И так как $\frac{A}{R} = 5^{/1/}$, то $\xi^{-1} = 20$, $\xi = 5 \cdot 10^{-2}$. Поскольку область измерений лежит обычно в интервале $10^{-1} \cdot r > 10^{-6}$, то можно положить $r^{\alpha} \simeq 1$. В случае системы ксенон-йод вещество будет "грязным" при N₂>5 \cdot 10⁻². Но растворимость йода ограничена (N₂<0.0003), она меньше нужного значения, поэтому по /1/ перенормировка индексов в системе ксенон-йод не может быть наблюдена.

Возможно, для этих целей в качестве примеси подойдет гелий. Критическая температура гелия на 250° ниже критической температуры ксенона. Если принять линейную зависимость критической температуры смеси от концентрации примеси /что оправдывается при небольших концентрациях/, то для системы ксенон-гелий

будем иметь $\frac{\partial T_k}{\partial N_2} \sim 250$, т.е. только в два раза меньше, чем для системы ксенон-йод /разность критических температур ксенона и йода ~ 560°С/.

Поскольку растворимость гелия в ксеноне, по-видимому, неограничена, то гелий может оказаться подходящей примесью в ксеноне для наблюдения перенормировок критических индексов. Все это, однако, требует экспериментальной проверки.

ЛИТЕРАТУРА

- 1. Анисимов М.А., Воронель А.В., Городецкий Е.Е. ЖЭТФ, 1971, т.60, вып.3, с.1117.
- 2. Estler W.T. et al. Phys.Rev. A., 1975, v.12, No.5, p.2118.
- 3. Ходеева С.М., Лебедева Е.С. ЖФХ, 1966, 50, №12, с.3105.
- 4. Стэлл Д.Р. Таблицы паров индивидуальных веществ. ИЛ, М., 1949.

Рукопись поступила в издательский отдел 20 октября 1980 года.

4