ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

10/1x-74

P14 - 7974

М.Баланда, В.В.Нитц

3722/2-74

5-202

ФАЗОВАЯ ДИАГРАММА ГЕМАТИТА В МАГНИТНОМ ПОЛЕ. I. Низкотемпературная модификация.

ЛАБОРАТОРИЯ НЕЙТРОННОЙ ФИЗИНИ

P14 - 7974

М.Баланда, В.В.Нитц

1

٤

ŧ

ФАЗОВАЯ ДИАГРАММА ГЕМАТИТА В МАГНИТНОМ ПОЛЕ.

I. Низкотемпературная модификация.

Направлено е журнал "Физика твердого тела"

1. ВВЕДЕНИЕ. ТЕРМОДИНАМИЧЕСКИЙ ПОТЕНЦИАЛ

Кристаллическая структура гематита (а-Fe₂O₃) относится к ромбоздрической сингонии с пространственной группой $D_{3d}^{5} - R_{3c}^{5}$. Ниже $T_{N} = 950 K$ магнитные моменты железа упорядочены антиферромагнитно. Известно, что при температуре ниже точки Морина Тм = 260 К моменты направлены по ромбоздрической оси /1/, при этом / как и в работе $\frac{2}{2}$. $m_{x} = m_{y} = m_{z} = \ell_{x} = \ell_{y} = 0, \ \ell_{z} \neq 0^{1/2}$ обозначим это состояние как состояние 1/. Выше Т М вектор антиферромагнетизма с хорошей степенью точности перпендикулярен ромбоздрической оси /1/ В этом случае, вообще говоря, возможны два состояния: в состоянии II $m_y = m_z = \ell_x = 0$, $\ell_y \neq 0$, $\ell_z \neq 0$, $m_x \neq 0$, в со-стоянии III $m_x = \ell_y = \ell_z = 0$, $m_y \neq 0$, $m_z \neq 0$, $\ell_z \neq 0$. /Выбрана прямоугольная система координат с осью x направленной по оси второго порядка, и осью z, совпадающей с ромбоэдрической осью крустапла; $\vec{m} = (\vec{M}_1 + \vec{M}_2 + \vec{M}_3 + \vec{M}_4)(4M_0)^{-1}$ вектор ферромагнетизма, $\vec{l} = (\vec{M}_1 - \vec{M}_2 - \vec{M}_3 + \vec{M}_4)(4M_0)^{-1}$ вектор антиферромагнетизма/.

При наложении достаточно большого поля вдоль оси z происходит фазовый переход первого рода из состояния с $\vec{l} = (00 l_z)$ в состояние с $\vec{l} \perp z$ /см., например, 3-7//. Внешнее поле, перпендикулярное оси z, приводит к плавному повороту вектора антиферромагнетизма от оси z, и при достаточной величине поля вектор \vec{l} становится практически перпендикулярным оси $z^{/4}$, 8,9/. Экспериментально установлено /см., например, работы 7,8,10//, что при температуре, достаточно близкой к T_M , при увеличении поля угол между \vec{l} и осью z, достигнувопределенного значения, скачком увеличивается до $-\frac{\pi}{2}$, т.е.

происходит фазовый переход первого рода. Однако известные экспериментальные работы не дают прямого ответа на вопрос о наличии гакого скачка в низкотемпературной области, например, при температуре жидкого азота.

В данной работе произведен термодинамический анализ поведения в магнитном поле гематита при $T < T_M$. На основе известных экспериментальных данных, при строгом учете симметрии фазовых состояний, рассмотрен вопрос о возможности фазового перехода второго рода при низкой температуре. Хотя анизотропия в базисной плоскости гематита мала, поведение кристалла оказывается существенно зависящим от направления поля в базисной плоскости. Построены фазовые диаграммы в переменных ($h_y h_z T$) и ($h_x h_y T$). Основные результаты этого анализа были уже представлены в коротком докладе на конференции /11/.

Термодинамический потенциал кристалла гематита с учетом магнитоупругой связи при наличии внешнего магнитного поля h² записывается в виде:

$$\Phi = \Phi_{M} + \Phi_{My} + \Phi_{My} \cdot (1/$$

Здесь, согласно /2/, магнитная энергия равна

$$\Phi = \frac{A}{2} \ell^{2} + \frac{C}{4} \ell^{4} + \frac{B}{2} m^{2} + \frac{D}{2} (\vec{\ell} \cdot \vec{m})^{2} + \beta (\ell_{x} \cdot m_{y} - \ell_{y} \cdot m_{x}) + \frac{f}{2} [(\ell_{x} + i\ell_{y})^{3} + (\ell_{x} - i\ell_{y})^{3}] m_{z} - \frac{a}{2} \ell_{z}^{2} - \frac{g}{4} \ell_{z}^{4} + \frac{b}{2} m_{z}^{2} + \frac{d}{2i} [(\ell_{x} + i\ell_{y})^{3} - (\ell_{x} - i\ell_{y})^{3}] \ell_{z} + \frac{e}{2} [(\ell_{x} + i\ell_{y})^{6} + (\ell_{x} - i\ell_{y})^{6}] - (\vec{m}\vec{h}).$$
 /2/

Энергия магнитоупругого взаимодействия, отвечающая симметрии кристалла, в квадратичном относительно компонент вектора антиферромагнетизма приближении имеет вид /12/;

$$\begin{split} \Phi_{MY} &= (\delta_1 \ell_x^2 + \delta_2 \ell_y^2 + \delta_5 \ell_y \ell_z) u_{xx} + (\delta_2 \ell_x^2 + \delta_1 \ell_y^2 - \\ &- \delta_5 \ell_y \ell_z) u_{yy} + \delta_3 \ell_z^2 u_{zz} + [2(\delta_1 - \delta_2) \ell_x \ell_y + \\ &+ 2\delta_5 \ell_x \ell_z] u_{xy} + (2\delta_6 \ell_x \ell_y + \delta_4 \ell_x \ell_z) u_{xz} + \\ &+ [\delta_6 (\ell_x^2 - \ell_y^2) + \delta_4 \ell_y \ell_z] u_{yz} . \end{split}$$

/ u_{ik} - компоненты тензора деформации/. Упругая энергия кристалла характеризуется упругими постоянными $\lambda_i^{/12,13/}$;

$$\begin{split} \Phi_{\mathbf{y}} &= \frac{\lambda_{1}}{2} \left(u \frac{2}{\mathbf{x}\mathbf{x}} + u \frac{2}{\mathbf{y}\mathbf{y}} \right) + \lambda_{2} u_{\mathbf{x}\mathbf{x}} u_{\mathbf{y}\mathbf{y}} + \frac{\lambda_{3}}{2} u \frac{2}{\mathbf{z}\mathbf{z}} + \\ &+ \lambda_{4} \left(u_{\mathbf{x}\mathbf{x}} + u_{\mathbf{y}\mathbf{y}} \right) u_{\mathbf{z}\mathbf{z}} + (\lambda_{1} - \lambda_{2}) u_{\mathbf{x}\mathbf{y}} + 2\lambda_{5} \left(u \frac{2}{\mathbf{x}\mathbf{z}} + \frac{4}{4} \right) \\ &+ u \frac{2}{\mathbf{y}\mathbf{z}} + 2\lambda_{6} \left[\left(u_{\mathbf{x}\mathbf{x}} - u_{\mathbf{y}\mathbf{y}} \right) u_{\mathbf{y}\mathbf{z}} + 2u_{\mathbf{x}\mathbf{y}} u_{\mathbf{x}\mathbf{z}} \right] . \end{split}$$

Получая из системы уравнений

$$\frac{\partial \Phi}{\partial u_{ij}} = 0, \quad (i,j) = x, y, z \qquad /5/$$

выражения для равновесных значений $u_{ij}^{(0)}$ и подставляя их в /2/, /3/, /4/, получаем выражение для потенциала:

$$\Phi = \frac{A}{2} \ell^{2} + \frac{C}{4} \ell^{4} + \frac{B}{2} m^{2} + \frac{D}{2} (\vec{\ell} \cdot \vec{m})^{2} - \frac{(a + a_{MY})}{2} \ell^{2}_{z} - \frac{(a + a_{MY})}{2} \ell^{2}_{z} - \frac{(a + a_{MY})}{2} \ell^{2}_{z} + \frac{(d + d_{MY})}{2i} [(\ell_{x} + i\ell_{y})^{3} - (\ell_{x} - i\ell_{y})^{3}] \ell_{z} + \frac{\ell^{2}}{2} (\ell_{x} m_{y} - \ell_{y} m_{x}) + \frac{f}{2} [(\ell_{x} + i\ell_{y})^{3} + (\ell_{x} - i\ell_{y})^{3}] m_{z} + \frac{e}{2} [(\ell_{x} + i\ell_{y})^{6} + (\ell_{x} - i\ell_{y})^{6}] - (\vec{m}\vec{h}) + \Phi^{\circ}_{MY}.$$
 /6/

Здесь Φ_{My}^0 - изотропная часть магнитоупругой энергии. Кроме того, магнитоупругая связь проявляется в виде добавок к константам магнитной анизотропии:

$$a_{MY}^{P} = -2[(\delta_{1} + \delta_{2})(L - 2K) - 2(\delta_{1} - \delta_{2})M + \delta_{3}R + /7/ + 2\delta_{4}V + 4\delta_{5}N - 2\delta_{6}U],$$

$$g_{MY}^{P} = 4[(\delta_{1} + \delta_{2})(L - K) - (\delta_{1} - \delta_{2})M + \delta_{3}(R - Q) + /8/ + 2\delta_{4}V + 4\delta_{5}N - \delta_{6}U],$$

$$d_{MY}^{P} = (\delta_{1} - \delta_{2})N + \delta_{4}U + 2\delta_{5}M + 2\delta_{6}V.$$
(9)

В выражениях /7/ - /9/ коэффициенты K, L, M, N, Q, R известные функции магнитоупругих констант и упругих постоянных ^{/14/}.

При температуре, достаточно удаленной от Γ_N , константа D, определяющая величину парапроцесса при действии поля вдоль вектора \vec{l} , существенно больше обменных констант A, B и C. Поэтому во всех обменных

инвариантах можно положить $\ell^2 = \ell_0^2 - m^2$, где ℓ_0^2 (Т) квадрат вектора антиферромагнетизма ниже течки Морина при отсутствии поля. Для простоты примем $\ell_0^2 = 1$. Во всех инвариантах необменного происхождения ввиду нх относительной малости можно не учитывать изменения абсолютной велшчины вектора антиферромагнетизма, т.е. вместо $|\ell|$ использовать $|\ell_0|$ |. Минимизируя при этих условиях потенциал /6/ по m_x, m_y, m_z , получаем энергию в виде зависимости от направления вектора ℓ / ℓ угол между ℓ и осью z, ϕ - угол между проекцией ℓ на базисную плоскость и осью x /:

$$\Phi(\theta,\phi) = -\frac{a_1}{2}\cos^2\theta - \frac{g_1}{4}\cos^4\theta + d_1\sin^3\theta \times \cos^4\theta + \sin^3\theta + \sin^6\theta\cos^6\phi - \frac{H_{11}^2}{2(B_1+D)} - \frac{H_{12}^2}{2B_1} / 10/2$$

$$(a_1 = a + a_{MY}, g_1 = g + g_{MY}, d_1 = d + d_{MY}),$$

где $H_{||}$ - проекция эффективного магнитного поля $\vec{H}(H_x = h_x + \beta \sin \theta \sin \phi, H_y = h_y - \beta \sin \theta \cos \phi, H_y = h_x + f \sin^2 \theta \cos 3\phi)$

на ось антиферромагнетизма:

$$H_{||} = (h_x \cos \phi + h_y \sin \phi) \sin \theta + (h_z + f \sin^3 \theta \cos 3 \phi) \cos \theta; / 11/$$

Н_⊥ - компонента эффективного поля Ĥ, перпендикулярная оси антиферромагнетизма, т.е.

$$H_{\perp}^{2} = H_{x}^{2} + H_{y}^{2} + H_{z}^{2} - H_{||}^{2}$$
 (12/

В выражения / ||O/B| = B - A - C.

Характер индуцированных внешним магнитным полем фазовых переходов существенно зависит от направления проекция поля на базисную плоскость относительно осей второго порядка ^{/15/}. Если поле перпендикулярно оси второго порядка, при повороте вектора ℓ к базисной плоскости осуществляется фазовый переход первого или второго рода. В магнитном поле, параллельном оси второго порядка, если и имеет место фазовый переход, то только первого рода, т.к. при любой величине поля кристалл находится в неизменном состоянии симметрии /состояние II /.

Наиболее существенным членом в магнитной энергин, приводящим к различню поведения в поле h_x и h_y , является $d_l \sin^3 \theta \cos \theta \sin 3\phi$. Из-за относительной малости константы d_i это различие не проявилось в экспериментах по изучению поведения гематита в сильном магнит-

ном поле /например, $^{/16/}$ /. Следовательно, можно использовать данные по определению величины поля, при котором осуществляется поворот вектора $\vec{\ell}$ к плоскости (111), не принимая во внимание обычной для многих работ неопределенности направления поля в базисной плоскости.

2. МАГНИТНОЕ ПОЛЕ В ПЛОСКОСТИ СИММЕТРИИ

При увеличении магнитного поля, перпендикулярного оси второго порядка ($\vec{h} = (0h_y h_z)$), осуществляется фазовый переход IV \rightarrow Ш ^{/15/}. Здесь IV - состояние симметрии, в котором кристалл находится уже при сколь угодно малой величине поля /единственный элемент симметрии точечной группы - центр инверсии; при этом все компоненты векторов \vec{m} и $\vec{\ell}$ не равны нулю/. Симметрией состояний допускается при этом фазовый переход второго рода.

Следует отметить, что при повороте моментов под действием возрастающего поля вектор $\vec{\ell}$ не перпендикулярен оси у , пока не произойдет переход в состояние III. В частном случае, когда $\vec{h} = (0h_y 0)$, при малой величине поля минимизацией выражения /10/ по углу ϕ получаем соотношения:

$$\sin\phi = -\frac{\beta\beta d_1 \cos\theta}{B_1(a_1 - \frac{\beta^2}{B_1})} \quad h_y, \cos\phi < 0 - npu \quad h_y > 0$$
(13/

$$\sin\phi = \frac{3\beta d_1 \cos\theta}{B_1(a_1 - \frac{\beta^2}{B_1})} h_y$$
, $\cos\phi > 0 - \pi p_H h_y < 0$.

В более общем случае $(h_y \neq 0, h_z \neq 0)$ в состоянии IV $\sin \phi \neq 0$, если даже пренебречь инвариантами $d_1 \sin^3 \theta \cdot \cos \theta \sin 3\phi$ и с $\sin^6 \theta \cos 6\phi$, а также величиной f $\sin^3 \theta \cos 3\phi$. Учтем это обстоятельство при рассмотрении перехода IV \rightarrow III вдали от T_M , т.е. когда константа β /равная 2,1 \cdot 10⁴ \ni /¹⁷/, существенно меньше величины поля h_y , необходимого для фазового перехода /10 \div 15 \cdot 10⁴ \ni /. В результате минимизация энергии по ϕ вблизи точки фазового перехода получаем:

$$\sin\phi = -\frac{h_z}{h_y}\left(1 - \frac{\beta}{h_y}\right)\cos\theta. \qquad /14/$$

После подстановки этого соотношения в /10/ энергия представляется в виде разложения по степеням $\cos\theta$:

$$\Phi = \Phi_0 - \frac{1}{2} \left[a_1 - \frac{\beta^2}{B_1} - \frac{\beta h_y}{B_1} - \frac{\beta h_z^2}{B_1 h_y} - \frac{\beta h_z^2}{B_1 h_y} (1 - \frac{\beta}{h_y}) \right] \cos^2 \theta - \frac{1}{8} \left[2g_1 - \frac{\beta h_y}{B_1} + \frac{4h_z^2}{B_1} (\frac{\beta}{2h_y} + \frac{b}{B_1}) \right] \cos^4 \theta + \dots$$
(15/)

Отсюда, в соответствии с теорией фазовых переходов /18/, получаем условия для фазового перехода второго рода:

$$\frac{\beta h_{yo}}{B_1} + \frac{\beta h_{zo}^2}{B_1 h_{yo}} (1 - \frac{\beta}{h_{yo}}) = a_1 - \frac{\beta^2}{B_1}$$

$$\frac{\beta h_{y_0}}{B_1} = \frac{4h_{z_0}^2}{B_1} \left(\frac{\beta}{2h_{y_0}} + \frac{b}{B_1}\right) > 2g_1 \quad . \tag{16}$$

Здесь h yo и h zo - значения компонент магнитного поля, при котором осуществляется переход.

На фазовой днаграмме /puc. 1/ изображена поверхность, разделяющая состояния IV и III. Участок этой поверхности при низкой температуре, ограниченный линией O₁B, удовлетворяет условиям /16/, т.е. является поверхностью фазового перехода второго рода. Приняв в соотношениях /16/ знаки равенства, получаем выражения для компонент поля на критической линии фазового перехода второго рода или, как мы будем далее ее называть, на трикрытической линии O₁B:

$$h_{y} = \frac{2B_{1}}{3\beta} (a_{1} - \frac{\beta^{2}}{B_{1}} + g_{1})$$

$$h_{z}^{2} = \frac{2B_{1}^{2}}{9\beta^{2}} (a_{1} - \frac{\beta^{2}}{B_{1}} + g_{1}) (a_{1} - \frac{\beta^{2}}{B_{1}} - 2g_{1}).$$
/17/

При написании этих выражений для простоты пренебрегалось величиной β/h_y по сравнению с единицей нанизотропией ферромагнитного момента (b = 0).

Поверхность, показанная на рис. 1 вне трикритической линни O_1B , является поверхностью равновесия фазовых состояний III и IV и определяется из условия равенства энергий этих состояний. В этой области фазовой днаграммы при увеличении магнитного поля угол θ , достигнув определенного значения, скачком увеличивается до 90°, т.е. осуществляется фазовый переход первого рода.

Вопрос о возможности фазового перехода второго рода при низкой температуре в поле, перпендикулярном оси z, уже обсуждался в /19,20/ Прямых поисков трикритической точки не производилось, и имеющиеся экспери-

ментальные данные не позволяют решить вопрос о существовании такой точки однозначно. Однако температурные зависимости поля, при котором вектор \vec{l} становится перпендикулярным ромбоэдрической оси, в случаях $\vec{h} \perp z$ в $\vec{h} \parallel z$, определенные довольно точно / например, $\frac{77,16}{1}$ позволяют нам косвенно рассмотреть вопрос о трикритической точке O_1 в плоскости (h_y T). Известные исследования $\frac{719,20}{1}$ представляются нам недостаточно удовлетворительными.

Используя выражение для пола фазового перехода второго рода

$$h_{yo} (h_z = 0) = \frac{B_1}{\beta} (a_1 - \frac{\beta^2}{B_1}),$$
 /18/

получающееся из /16/, соотношение для поля h_{zo} перехода первого рода, следующее из условия $\Phi(\theta=0) = \Phi(\theta=\frac{\pi}{2})$: $h_{zo}^{2}(h_{y}=0) = \frac{(B_{1}+b)(B_{1}+b+D)}{D}(a_{1}-\frac{\beta^{2}}{B_{1}}+\frac{g_{1}}{2}), /19/$

и условие для трикритической точки О

$$a_1 - \frac{\beta^2}{B_1} - 2g_1 = 0,$$
 ///20/

получаем соотношение, которое должно выполняться при температуре T₀₁ /см. *рис.* 1/:

$$\chi_{||}(\theta = \frac{\pi}{2}) - \chi_{||}(\theta = 0) = \frac{5}{4} m_0 \frac{h_{yo}(h_z = 0)}{h_{zo}^2(h_y = 0)} .$$
 /21/

Здесь
$$\chi_{||}(\theta = \frac{\pi}{2}) = \frac{1}{B_1 + b}$$
, $\chi_{||}(\theta = 0) = \frac{1}{B_1 + b + D}$ - вос-

приимчивости в параллельном относительно оси z направлении при $\theta = \frac{\pi}{2}$ и $\theta = 0$; $m_0 = \beta/B_1$ спонтанный магнитный момент при $\theta = \frac{\pi}{2}$.

Все величины, входящие в соотноше́ние /21/, определялись экспериментально с той или иной точностью. Наибольшая относительная неопределенность связана с $\chi_{||}(\theta=0)$. Экспериментальные значения $\chi_{||}(\theta=0)$, полученные в разных работах /например, /4,17/ /,сущест-

венно различаются между собой и превышают значения, ожидаемые из теории молекулярного поля /см., например, $^{/21/}$ /. Если использовать температурную зависимость $\chi_{||}$ ($\theta = 0$), следующую из теории молекулярного поля, и значения

 $\chi_{||} (\theta = \frac{\pi}{2}) = 17,5 \cdot 10^{-6} \frac{9 \text{ рг}}{\Gamma_{\text{C}} \cdot \Gamma_{\text{*}} \cdot \Im}$ и $m_0 = 0,4$, /22/ то условие /21/ выполняется при $T_{01} = 120$ K / $h_{01} =$ = 155 к $\Im^{/7/}$ /. При этом $\chi_{||} (\theta = 0) = 10^{-8} \frac{9 \text{ рг}}{\Gamma_{\text{C}} \cdot \Gamma_{\text{*}} \cdot \Im}$.Значение $\chi_{||} (\theta = 0) = 0,5 \cdot 10^{-6} \frac{9 \text{ рг}}{\Gamma_{\text{C}} \cdot C_{\text{*}} \Im}$, полученное для гематита при T = 140 K экспериментально ^{/4/}, более благоприятно для существования трикритической точки. Если приять это значение и при более высокой температуре, координаты трикритической точки

 $T_{01} = 165 K$, $h_{01} = 135 \kappa 3$.

Полученный в работе $^{/\Gamma 9/}$ вывод о том, что при любой температуре $T < T_M$ в поле, перпендикулярном оси z, происходыт фазовый переход первого рода, не точен, так как при этом не принималась во внимание анизотропия ферромагнитного момента /член $\frac{b}{2}m_z^2$ в выражении для энергии/, т.е. фактически в формуле /21/

вместо $\chi_{||} \left(\theta = \frac{\pi}{2}\right)$ использовалось $\chi_{\perp} \left(\theta = \frac{\pi}{2}\right) = \frac{1}{B_1}$. Различие величин $\chi_{||} \left(\theta = \frac{\pi}{2}\right)$ и $\chi_{\perp} \left(\theta = \frac{\pi}{2}\right)$ и, следовательно, существенное значение константы анизотропии b можно считать хорошо установленным. В работе $\frac{22}{22}$ приводятся значения $\chi_{||} \left(\theta = \frac{\pi}{2}\right) = 17,5 \cdot 10^{-6}$ и $\chi_{\perp} \left(\theta = \frac{\pi}{2}\right) = 19,5 \cdot 10^{-6}$ $\frac{30}{\Gamma_c}$ Различяе между этими восприимчивостями подтверждается также работой $\frac{17}{17}$.

3. МАГНИТНОЕ ПОЛЕ В БАЗИСНОЙ ПЛОСКОСТИ

Рассмотрим подробнее случай $h = (h_x 00)$. Характер изменения угла θ в поле h_x описывается уравнением, получаемым из условия $\frac{\partial \Psi}{\partial \theta} = 0$ /в этом случае cos $\phi = 0$ /15///:

$$(a_1 - \frac{\beta^2}{B_1} + g_1 \cos^2 \theta) \sin \theta \cos \theta + d_1 \sin^2 \theta (1 - 4\cos^2 \theta) - \frac{\beta}{B_1} h_x \cos \theta = 0.$$
(22/

Как видно, отличие от случая $\vec{h} = (0h_y 0)$ обусловленс инвариантом $d_1 \sin^3 \theta \cos \theta \sin 3 \phi$ /величанами f и с пренебрегаем/. Очевидно, что если зеличина $|d_1|$ достаточно мала, то в температурной области, в которой при $\vec{h} = (0h_y 0)$ осуществляется фазомый переход первого рода, при $\vec{h} = (h_x 00)$ также имеет место скачок и фазовый переход первого рода /но без изменения симметрии состояния/. При низкой же температуре, где в поле $\vec{h} = (0h_y 0)$ осуществляется фазовый переход второго рода, при $\vec{h} = (h_x 00)$ в этом случае имеем непрерывный поворот вектора антиферромагнетизма без фазового перехода. На фазовой днаграмме $(h_x T)$ в таком случае существует критическая точка O_8 /см. *рис. 2/*, при приближении к которой со стороны высоких температур величина скачка стремится к нулю. Точка O_8 аналогична, например, критической точке системы жидкость пар.

На основе уравнения /22/ нами произведены расчеты /с помощью вычислительной машины/ зависимости температуры критической точки от величины константы d_1 /puc. 3/. При этом принималось, что $\beta = 2,1 \cdot 10^{-4} \Im S^{-17/2}$, $B_1 = 18,3 \cdot 10^6 \Im S^{-22/2}$, а кеобходимые в расчетах температурные зависимости констант анизотропии ($a_1 - \beta^2/B_1$)н g_1 были получены с помощью формул /18/ и /19/с исполь-

.

зованием экспериментальных значений критических полей $h_{y_0}(h_z = 0)$ и $h_{z_0}(h_y = 0)^{/7,16/}$ и восприимчивостей $\chi_{||}(\theta = 0)$ и $\chi_{||}^{z_0}(\theta = \frac{\pi}{2})^{/22/}$. Видим, что в любом случае $T_{08} > T_{01}$.

Рис. 3. Зависимость температуры критической точки в плоскости $(h_x T)$ от величины константы анизотропии d_1 .

Значения $|d_1|$ ниже точки Морина могут быть определены из измерений магнитной анизотропии в плоскости /111/кристалла гематита, произведенных методом вращающего момента ^{/23/}. При действии в базисной плоскости магнитного поля \vec{h}_0 , существенно большего, чем эффективное поле анизотропии в плоскости $(|\vec{h}_0| \gg |d_1|)$, как это имело место в работе ^{/23/}, вектор антиферромагнетизма можно считать перпендикулярным направлению поля, т.е. $\phi = \frac{\pi}{2} + \phi_H$, где ϕ_H - угол между \vec{h}_0 и осью х. В таком случае вращающий момент

$$\mathcal{L} = \frac{d\Phi}{d\phi_{I}} = 3d_{I}\sin^{3}\theta\cos\theta\sin3\phi_{H} = \mathcal{L}_{0}\sin3\phi_{H} \cdot /23/$$

Значения входящего в выражение /23/ угла θ можно считать не зависящими от направления поля в базисной плоскости и определить с помещью /22/, пренебрегая членом с множителем d_1 . Используя представленные в работе /23/ зависимости амплитуды вращающего момента Ω_0 от h_0 при различных температурах, получаем показанную на *рис.* 4 температурную зависимость константы d_1 /из нейтронодифракционных измерений /24/ следует, что $d_1 < 0$ /.

Сопоставляя *рис.* 3 н *рис.* 4, получаем следующие координаты критической точки: $T_{08} = 180$ *K*, $h_{08} = 120$ кЭ.

В более общем случае $\vec{h} = (h_x h_y 0)$ кристалл находится в нензменном состоянии симметрии IV, т.е., как и при $\vec{h} = (h_x 00)$, остается возможным лишь фазовый переход первого рода без изменения свмметрии /15/. На фазовой диаграмме $(h_x h_y T) / puc. 2/$ трикритическая точка O_1 соединяется с критической точкой O_8 непрерывной линией $O_1 O_8$ критических точек, которая ограничивает поверхность равновесня двух термодинамических минимумов состояния IV.

Рис. 4. Температурная зависимость константы анизотропии d₁, полученная на основании результатов измерений вращающего момента /23/

1. При наличии трикритической точки в плоскости (h, T) фазовой диаграммы существует трикритическая линия в пространстве (h, h_zT). Получены уравнения этой линии и уравнения поверхности фазового перехода второго рода, ограничиваемой трикритической линией в низкотемпературной области.

Анализ известных экспериментальных данных показывает, что существование трикритической точки в плоскости (h_yT) при $T < T_M$ возможно в рамках теории молекулярного поля. Экспериментальные данные по продольной восприимчивости подтверждают существование трикритической точки.

2. При действии поля h_x возможен фазсвый переход первого рода без изменения симметрии кристалла. В этом случае в плоскости (h_x T) существует критическая точка, а в пространстве ($h_x h_y$ T) - критическая линия, соединяющая трикритическую точку в поле h_y с критической точкой в поле h_x .

Представлены результаты расчета температурной зависимости константы анизотропии d₁, на основании которой получены координаты критической точки в плоскости (h_xT).

Авторы благодарят И.Коцева, Ю.М.Останевича н Е.А.Ткаченко за полезные обсуждения.

ЛИТЕРАТУРА

- 1. C.Shull, W.Strauser, E.Wollan. Phys.Rev., 83, 333 (1951).
- 2. И.Е.Дзялошинский. ЖЭТФ, 32, 1547 /1957/.
- 3. P.J.Besser, A.H.Morrish. Phys.Lett., 13, 289 (1964).
- 4. Р.А.Восканян, Р.З.Левитин, В.А.Щуров. ЖЭТФ, 53, 459 /1967/.
- 5. N.Blum, A.J.Freeman, J.W.Strauser, L.Grodzins. J.Appl.Phys., 36, 1169 (1965).
- 6. S.Foner, Proc.Intern.Conf.Magnetism, Nottingham, England 1964, p.438.
- 7. S.Foner, Y.Shapira. Phys.Lett., 29A, 276 (1969).

- 8. P.J.Flanders, S.Strikman. Solid State Trmm., 3, 285 (1965).
- 9. G.Cinader, S.Strikman. Solid State Comm., 4, 459 (1966).
- 10. P.J.Flanders. J.Appl.Phys., 40, 1247 (1969).
- 11. М.Баланда, В.В.Нитц. Международная конференция по магнетизму, Москва, август 1973, т. 2, изд. "Наука", М., 1974.
- 12. Е.А. Туров, В.Г.Шавров. ФТТ, 7, 217 /1965/.
- 13. Л.Д.Ландау, Е.М.Лифшиц. Теория упругости. М., изд. "Наука", 1965.
- изд. "Наука", 1905. 14. А.С.Пахомов. ФММ, 25, 769 /1968/. ТТ 16 213 1974: ОИЯИ, Р4-7397, Дубна, 1973.
- 16. Y.Shapira, Phys.Rev., 184, 589 (1969).
- 17. L.Neel, R.Pauthenet, C.R.Acad.Sci., Paris, 234, 2172 (1952).
- 18. Л.Д.Ланоау. ЖЭТФ, 7, 19 /1937/. Л.Д.Ландау, Е.М.Лифшиц. Статистическая физика. Изд. "Наука", 1964.
- 19. I.S. Jacobs, R.A. Beyerlein, S. Foner, J.P. Remeika. Intern. J. Magnetism, 1, 193 (1971).
- 20. Р.З.Левитин, В.А.Щуров. ЖЭТФ, Письма, 7, 142 /1968/.
- 21. Дж.Смарт. "Эффективное поле в теории ферромагнетизма", изд. "Мир", 1968. 22. Т.Копеко, S.Abe, J.Phys.Soc.Japan, 20, 2001 (1965).
- 23. А.А.Богданов. ФТТ, 14, 3362 /1972/.
- 24. R.Levitin, V.Nitts, S.Niziol, R.Ozerov. Solid St.Comm., 7, 1665 (1969).

Рукопись поступила в издательский отдел 23 мая 1974 года.