ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

C346,48

F-63

24/x11-7. P14 - 7359

4635/2 В.И.Гольданский, Н.Н.Зацепина, В.И.Петрухин, В.Е.Рисин, В.М.Суворов, И.Ф.Тупицын, Н.И.Холодов, И.А.Ютландов

ИЗУЧЕНИЕ ВНУТРИМОЛЕКУЛЯРНЫХ ЭЛЕКТРОННЫХ ЭФФЕКТОВ В ОРГАНИЧЕСКИХ СОЕДИНЕНИЯХ С ПОМОЩЬЮ ЗАХВАТА 77-МЕЗОНОВ ВОДОРОДОМ

ЛАБОРАТОРИЯ ЯДЕРНЫХ ПРОБЛЕМ

P14 - 7359

В.И.Гольданский,¹ Н.Н.Зацепина,² В.И.Петрухин, ⁻ В.Е.Рисин,³ В.М.Суворов, И.Ф.Тупицын,² Н.И.Холодов,¹ И.А.Ютландов

ИЗУЧЕНИЕ ВНУТРИМОЛЕКУЛЯРНЫХ ЭЛЕКТРОННЫХ ЭФФЕКТОВ В ОРГАНИЧЕСКИХ СОЕДИНЕНИЯХ С ПОМОЩЬЮ ЗАХВАТА 77-МЕЗОНОВ ВОДОРОДОМ

Направлено в ДАН СССР

Ссъединезини пистетут пдорима исследосаний БИБЛИФТЕКА

- ИXФ AH CCCP,
- ² ГИПХ МХП СССР,
- ³ Воронежский государственный университет

Summary

The probabilities \mathbf{W} , of the π -meson capture by the fragments of $Z_m H_n Z'_k H'_n$ molecules of different classes with hydrogeneous substituent group are measured. Technique of W determination is based on the use of ordinary and selectively deuterated compounds. It is found that the coefficints a_{H-Z} in the frame and functional groups differ ströngly due to the mutual influence of fragments. In the row of CH₃X and C₆H₅X substitution derivates the correlation treatment of ${}^{a}_{H-C}^{CH_3}$ and ${}^{a}_{H-C}^{CH_5}$ is performed with the help of the Hammet-Taft type equations. The presence of the linear correlations with the induction σ_{I} -constants of substitutes and their absence when comparing the a_{H-C} coefficients with other sets of σ -constants proves the dominant role of the induction effect.

🖸 1973 Объединенный институт ядерных исследований Дубна

Ранее при переходе от углеводородов алифатического и ароматического рядов к их галоидным и нитропроизводным наблюдалось уменьшение вероятности захвата π -мезонов водородом C-H связей /H. Это уменьшение обусловлено отрицательным индукционным эффектом, приводящим к смещению облака валентных электронов от водорода к углероду внутри связи C-H под действием более электроотрицательных заместителей: Однако в этих опытах заместители не содержали водорода и, следовательно, их обогащение электронами не могло экспериментально наблюдаться нашим методом.

В настоящей работе предпринята попытка измерения вероятностей захвата π^- -мезонов водородом функциональных и остовных групп в алифатических и ароматических спиртах, аминах, эфирах, кислотах, кетонах и других веществах с использованием обычных $Z_m H_n Z'_k H'_n$ и частично дейтерированных соединений $Z_m H_n Z'_k D_n'$. Такая методика измерения основана на подавлении в 10³-10⁵ раз для дейтерия^{/2,3}/и других более сложных ядер характерной для легкого изотопа водорода реакции перезарядки π^- -мезонов:

 $\pi^- + p \rightarrow \pi^\circ + n; \pi^\circ \rightarrow 2\gamma.$

Выбор в качестве заместителей водород/дейтерий/содержащих функциональных групп позволяет проследить за распределением мезонов, а, следовательно, и плотностью валентных электронов связей II-Z одновременно и в остовных, и в функциональных группах.

Реактивы, использованные в эксперименте, имели квалификацию "ХЧ" или "ЧДА", содержание дейтерия

3

в функциональных группах контролировалось с точностью до 0,1% методами масс-спектрометрии и ИК-спектроскопии и составляло обычно 92-99% при практически полном отсутствии дейтерня в остовной группе.

Эксперимент выполнен на пучке *п*-мезонов синхроциклотрона ЛЯП ОИЯИ. Схема установки и методика измерения описаны ранее /4/. На опыте измерялись вероятности захвата пионов водородом в обычном соединении и частично дейтерированном. По разности эффектов от этих мишеней находилась вероятность захвата водородом функциональной группы. Из этих вероятностей с помощью формулы /5/

$$W \frac{Z_m H_n Z'_k H_n'}{n + mZ + n' + kZ'} = \frac{a_{H-Z} n Z^{-2} + a_{H-Z'} n'(Z')^{-2}}{n + mZ + n' + kZ'} / 1 /$$

вычислялись коэффициенты a_{H-Z} и a_{H-Z} , фрагментов $Z_m H_n$ и $Z'_k H'_n$ /таблица 1/.

Из таблицы 1 видно, что определяемые из опыта коэффициенты a_{H-O} , a_{H-N} , a_{H-C} соответствующих связей в функциональных и остовных группах в 1,5 - 3,5 раза отличаются в ту или другую стороны от значений a, вычисленных по вероятностям захвата π^- -мезонов водородом в гидридах: H_2O , N_2H_4 , C_nH_{2n+2} , $C_6H_6^{/1,5/}$ При этом в алифатических и ароматических спиртах и аминах имеет место значительное увеличение. коэффициентов a_{H-O} и a_{H-N} по сравнению с a для воды и гидразина. Следует отметить, что увеличение захвата пионов водородом функциональных групп сопровождается уменьшением вероятности захвата пионов водородом остовных групп.

Для количественной характеристики электронных эффектов, обнаруживаемых с помощью мезохимического метода, была проведена корреляционная обработка данных по коэффициентам a_{H-C} метильных и фенильных групп /таблица 2/ с помощью соотношений типа Гаммета-Тафта. При этом использовались коэффициенты a_{H-C} как для измеренных в настоящей работе соединений /табл. 1 и 3/, так и данные работы /1/. Наличие линейной зависимости /рис. 1 и 2/ коэффициентами a_{H-C} и индукционными σ_1 постоянными в рядах замещенных метанов и бензолов /СН₃ X и C₆ H₅ X /:

$$a_{H-C}^{CH_3} = [1,93 \pm 0,03] - [2,26 \pm 0,07] \cdot \sigma_I , /2/$$

$$a \frac{c}{H-C} \delta^{H} s = [0,83 \pm 0,03] - [0,68 \pm 0,09] \cdot \sigma_{I}, \quad /3/$$

и ее отсутствие при использовании наборов σ -постоянных, учитывающих резонансное влияние заместителей X,свидетельствует о доминирующей роли индукционного влияния в подавлении вероятности ядерного захвата пионов водородом в молекулах.

Как видно из рис. 1, от корреляционной прямой резко отклоняется точка, отвечающая тетраметиламмонийиодиду. Аналогичная аномалия наблюдается и в поведении некоторых спектроскопических характеристик названного

и других "онневых" соединений типа $[CH_3]_4 M^+ X^{-/9/}$. Согласно ^{/9,10/}, вероятное объяснение аномалии состоит в компенсации положительного заряда центрального атома M^+ зарядом внешнесферного аниона X, вследствие чего индукционный эффект $N^+(CH_3)_3$ -группы уменьшается до значения, почти совпадающего с таковым для "нейтрального" $(CH_3)_2 N$ -заместителя. Причины выпадания из установленных зависимостей /2/ и /3/ точек №13-15 не ясны. Но судя по тому, что точка №15 и "нормальные" точки охватываются единой зависимостью

$$\begin{bmatrix} a \\ H-C \end{bmatrix}^{CH_3} - a \\ H-C \end{bmatrix} = \begin{bmatrix} 1,02 \pm 0,06 \end{bmatrix} - \begin{bmatrix} 1,81 \pm 0,15 \end{bmatrix} \cdot \sigma_I, /4/$$

использующей в качестве переменной разность коэффициентов a_{H-C} для CH_3 и C_6H_5 - групп, можно предположить, что наблюдаемые отклонения не связаны с индукционными взаимодействиями.

В приведенных выше данных не учитывалось влияние изотопного эффекта. Как видно из таблицы 4, где приведены вероятности захвата для дейтерозамещенного метилового спирта и частично дейтерированных бензолов, величина этого эффекта не превышает 15-30% и не может существенно исказить полученные результаты.

Следует оговорить, что установленное в настоящей работе преобладание индукционного эффекта в механизме электронных влияний на вероятность захвата π -мезонов ядрами водорода CH_3 и C_6H_5 -групп может не иметь места для захвата водородом OH и NH_2 -групп. Действительно, наблюдаемое в анилине и феноле относительное уменьшение коэффициентов a_{H-N} и a_{H-O} по сравнению с метиамином и метанолом может быть связано с некоторым вкладом резонансного эффекта, вызванного смещением p -электронов по механизму $p\pi$ - сопряжения с кольцом. В соответствии с тем, что электроноакцепторные заместители способны лишь к слабому резонансного ному взаимодействию с ароматическим кольцом, отсутствует заметное изменение коэффициента $a_{H-C}^{CH_3CO}$ в ацетофеноле по сравнению с ацетоном.

В заключение заметим, что измеренный на примерах пар соединений *СН₃ СООД* и *СН₃ СООН*, *СН₃ СООСД* и

 CH_3COOCH_3 коэффициент $a_{H-C}^{CH_3COO} = 0,51\pm0,05$ в пределах ошибок измерений совпадает со средним значением, которое можно вычислить по данным /11/.Последнее обстоятельство подтверждает вывод /12/ об отсутствии эффекта тождественных групп /11/ в диацетатах металлов.

6

Литература

- 1. Вильгельмова, П.Зимрот, В.И.Петрухин, В.Е.Рисин, Л.М.Смирнова, В.М.Суворов, И.А.Ютландов. Препринт ОИЯИ, Р1-6854, Дубна, 1972.
- 2. W.Chinowsky, J.Steinberger. Phys.Rev., 95, 1561 (1951).
- 3. V.I.Petrukhin, Yu.D.Prokoshkin. Nucl.Phys., 54, 414 (1964). В.И.Петрухин, Ю.Д.Прокошкин, А.И.Филиппов. ЯФ, 5. 327 /1967/.
- В.И.Петрухин. Труды IУ Международной конференции по физике высоких энергий и структуре ядра. Дубна, сент. 1971.Изд. ОИЯИ, Д1-6349, Дубна, 1972.
- 5. С.С.Герштейн, В.И.Петрухин, Л.И.Пономарев, Ю.Д.Прокошкин. УФН, 97, 3 /1969/; Л.И.Пономарев, ЯФ, 2, 223 /1965/; ЯФ, 6, 388 /1967/.
- 6. Ю.А.Жданов, В.И.Минкин. Корреляционный анализ в органической химии. Изд. Ростовского университета, 1966.
- 7. К.Д.Риче, У.Ф.Сэджер. В сб. "Современные проблемы физической органической химии". Изд. "Мир", М., стр. 498, 1967.
- 8. Справочник химика, т. 3, стр. 958. Изд. "Химия" М., 1964.
- 9. А.Ц.Зацепина, И.Ф.Тупицын, А.В.Кирова, А.И.Беляшова. Реакционная способность органических соединений, 8, 787 /1971/.
- C.S.chimenz. Angew.Chem. Intern.Ed., 7, 544 (1968);
 G.Frankal. J.Chem.Phys., 39, 1614 (1963);
 G.Aksens, J.Songstad. Acta Chem.Scand., 18, 655 (1968).
- З.В.Крумитейн, В.И.Петрухин, Л.И.Пономарев, Ю.Д.Прокошкин. ЖЭТФ, 55, 1640 /1968/.
- З.В.Крумштейн, В.И.Петрухин, В.Е.Рисин, Л.М.Смирнова, В.М. Суворов, И.А.Ютландов. ОИЯИ, Р1-6853, Дубна, 1972.

Рукопись поступила в издательский отдел 25 июля 1973 года.

· m	
1.50 шина	
TCOMMUC	
and the second s	

Сосдине- ние W эксп Бункци рнальн ние · 10 ³ Х Стрикци ональ- труппа Х Стрикци ональ- эксперим. Для про- стого гидрида R Стри	ной ли Для прэс- тэго гид- рида 2,05 <u>+</u> 0,04
ние • 10 ³ х Эксперим. Для про- стого гидрида R Эксперим.	Для прос- того гид- рида 2,05±0,04
CU (U) 8 35+0 30	2,05 <u>+</u> 0,04
$\begin{array}{c} \text{CH}_{3}\text{OI} \\ \text{CH}_{3}\text{OI} \\ \text{CH}_{3}\text{OI} \\ \end{array} \begin{array}{c} \text{C}, 33 \pm 0, 30 \\ \text{G}, 11 \pm 0, 30 \\ \end{array} \begin{array}{c} \text{OII} \\ \text{2}, 58 \pm 0, 48 \\ \text{I}, 12 \pm 0, 20 \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \text{I}, 32 \pm 0, 06 \\ \end{array}$	
C2H50H 9,90±0,30 0H 3,88±0,63 I,12±0,30 C2H50II 7,55±0,24 C2H5 I,44±0,04	2,05 <u>+</u> 0,04
$\begin{array}{cccc} C_{3}H_{7}CH & 9,6I_{\pm}0,32 & OH & 2,50\pm I,20 & I,12\pm 0,20 \\ \hline C_{3}H_{7}OD & 8,46\pm 0.43 & & C_{3}H_{7} & I,47\pm 0,08 \end{array}$	2,05 <u>+</u> 0,04
CH ₃ Ning I3,20±0,36 N II ₂ 3,II±0,22 I,30±0,15 CH ₃ ND ₂ 6.20 ± 0.34 3 3 3 3 3 3 4 3 3 4 3 4 4 3 3 3 3 3 3 3 3 3 3 3 4 3 4 4 3 3 1 3 4 4 3 1 3 4 4 0 1 3 1 3 1 3 1 3 1 1 3 1 3 1 3 1 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 <td>2,05<u>+</u>0,04</td>	2,05 <u>+</u> 0,04
С ₆ ^H ₅ OH 1,25 <u>+</u> 0,13 OH 0,98 <u>+</u> 0,65 1,12 <u>+</u> 0,2 С ₆ H ₅ 0,56 <u>+</u> 0,05	0 . 98 <u>+</u> 0,08
$\begin{array}{c c} C_{6}H_{5}MH_{2} & 3,63\pm0,15\\ C_{6}H_{5}MI_{2} & 1,88\pm0,17 \end{array} & MH_{2} & 2,18\pm0,29 & 1,30\pm0,15\\ & & & & \\ C_{6}H_{5}MI_{2} & & & \\ \end{array} & \begin{array}{c} 3,63\pm0,15 & \\ C_{6}H_{5} & 0,55\pm0,06 \end{array}$	0.98 <u>+</u> 0.08
$\begin{array}{c c} C_{6}H_{5}CH_{3} & 5,35\pm0,20 \\ C_{6}H_{5}CI_{3} & 2,75\pm0,22 \\ \end{array} \begin{array}{c} CH_{3} & 1,56\pm0,21 \\ 2,75\pm0,22 \\ \end{array} \begin{array}{c} 2,05\pm0,04 \\ C_{6}H_{5} \\ \end{array} \begin{array}{c} 0, \\ 0, \\ 0, \\ 0, \\ 0 \end{array}$	30,95 <u>+</u> 0,08
$\begin{array}{c c} C_{c} H_{5} \\ C_{6} H_{5} \\ C_{6} H_{5} \\ C_{1} \\ C_{6} \\ H_{5} \\ C_{1} \\ C_{1} \\ C_{1} \\ C_{1} \\ C_{2} \\ C_{1} \\ C_{$	30,98 <u>+</u> 0,02
$\begin{array}{c c} C_{6}H_{5}COCH_{3} & 2,77\pm0.16 & COCH_{3} & 1,09\pm0.15 \\ C_{6}H_{5}COCH_{3} & 1,35\pm0.12 & 2,05\pm0.04 & C_{6}H_{5} & 0,62\pm0.055 \end{array}$	80,92 <u>+</u> 39,08
CH ₃ COOH I,92±0,II COOH I,23±0,37 I,I2±0,20 СИ ₃ COOH I,32±0,I4 СИ ₃ 0,51±0,05	2,05 <u>+</u> 0,04
$\begin{array}{c c} CH_{3}COOCH_{3} & 4,00\pm0,17 \\ CH_{3}COOCH_{3} & 1,06\pm0,09 \\ 1,06\pm0,09 & 2,05\pm2,04 \\ CH_{3} & 0,52\pm0,042 \end{array}$	2,05 <u>+</u> 0,0

Таблица 2

,

NN	Заместитель	сн <u>з</u> Ин-с	CEHS CH-C	σ _I ・
<u>,</u> I.	$\mu_{1}^{(1)} = \mathbf{H}_{1}^{(1)} + \mathbf{e}_{1}^{(1)} \mathbf{e}_{1}^{(2)}$	2,05 <u>+</u> 0,04	0,98 <u>+</u> 0,08 /1/	0
2.	(CH ₃) ₃ Sn	2,02 <u>+</u> 0,15	n an an an an an an Anna an Anna. An an Anna T ha an an Anna Anna Anna.	0
3.	(C ₆ H ₅) ₃ Sn		0,30 <u>+</u> 0,07	0
4.	CH3		0,99 <u>+</u> 0,10	-0,03
5.	NII2	1,30±0,15	0,68 <u>+</u> 0,6	0,10
6.	C ₆ H ₅	I,56 <u>+</u> 0,2I	0,82 <u>+</u> 0,09 ^{/12/}	0,10
7.	с ₂ н ₅ х	I,59 <u>+</u> 0,06	-	0,20
8.	сн ₃ <i>S</i>	1,24 <u>+</u> 0,0 8' ''	-	0,20
9.	OH	1,32 <u>+</u> 0,06	0,56 <u>+</u> 0,06	0,25
10.	CH3COO	1,40 <u>+</u> 0,09	-	0,27
11.	C6 ^{!15} CO	1,09 <u>+</u> 0,15		0,28
12.	COCH3	1,27 <u>+</u> 0,15	0,62 <u>+</u> 0,06	0,32
13.	CH300C	0,52 <u>+</u> 0,05		0,30
14.	HOOC	0,51 <u>+</u> 0,05	-	0,30
15.	COCE	0,42 <u>+</u> 0,04/4/	0,23 <u>+</u> 0,04	0,38
16.	ៗ	0,33 <u>+</u> 0,05	0,58 <u>+</u> 0,06 ///	0,42
17.	С ₆ H ₅ 0	1,10 <u>+</u> 0,17	an an an <u>an</u> an	0,38
18.	SOCH3	1,02 <u>+</u> 0,05	-	0,52
19.	CN	0,56 <u>+</u> 0,06 ^[4]		0,56
20.	∧ 0 ₂	0,30 <u>+</u> 0,05 /1/	0,56±0,06/1/	0,63
2I.	с Х 020СН3	0,43 <u>+</u> 0,06	<u> </u>	0,62
22.	OCH3	··· -·	0,74 <u>+</u> 0,07	0,25
23.	$N = N C_6 H_5$		0,52 <u>+</u> 0,07 /1/	0,32
24.	Ce .	-	0,42 <u>+</u> 0,04 /1/	0,47
25.	B2	1	0,64±0,06 /1/	0,45
26. 27.	F (CH ₃) ₃ №+	- 1,47 <u>+</u> 0,05	0,44 <u>+</u> 0,04 **/ _	0,52 0,92

*Индукционные постоянные полярных заместителей взяты из /6-8/

10

							A SA				
<u>Таблица 3</u>	dн-с	2,02±0,I5	0,80±0,07	0,69±0,05	0,84±0,04	I,43±0,05	0,43±0,06	I,02±0,06	0,96±0,05	I,59 <u>+</u> 0,06	
	W ^{эксп.,} 10 ⁻³	7,85 <u>±</u> 0,57	2,06±0,I8	I,96±0,I4	2,59±0,15	4,95 <u>+</u> 0,17	I,08 <u>+</u> 0,I6	4,00±0,22	3,20 <u>+</u> 0,I8	8,80 <u>+</u> 0,34	
	Соединение	[⊞]₄ Sn	[C ₆ H ₅] ₄ Sn	[c ₅ H ₅] ₂ Fe	[c ₆ H ₆]2 C	[CH ₃] 4 <i>N</i>	$\left[CH_{3} \right]_{2} S 0_{4}$	[CH 3] ₂ S 0	[CH3]252	[02 ^H 5] 2 S	

Таблица 4 $W_{3KC\Pi., I0^{-3}} W^* = \frac{W_{3KC\Pi.100}}{100 - 6}$ (**E**²⁾ Соединение I,I4+0,68 C 9 30H 6,II+0,30 CH302 7,25<u>+</u>0,74¹⁾ 0,87+0,09 $C \mathcal{D}_{3}OH + CH_{3}O \mathcal{D}_{3}$ 8,35+0,30 CH₂OH 0,68<u>+</u>0,06 2,66+0,I4 C₆Hx D₆-х (52,5ат,% Д I,26+0,07 0,72+0,08I,65<u>+</u>0,I3 2,82+0,22 0,58C₆H₆+0,42C₆**D**₆ 3,90<u>+</u>0,80 C₆H₆ 1) Получено сложением W эксл. для С ДЗОН и СНЗОД 2) Подавление & является отношением вероятности W* к вероят-

ности захвата в недейтерированной молекуле.

ร