СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА **ЯДЕРНЫХ** ИССЛЕДОВАНИЙ **ДУБНА**

КРИСТАЛЛОГРАФИЧЕСКИЕ ДАННЫЕ ДИСУЛЬФИДА ТАЛЛИЯ ГАЛЛИЯ

733/2-79

А.М.Балагуров, М.Длоуга, Г.М.Миронова

5-20

C3Y2-1

P14 - 11981

,

А.М.Балагуров, М.Длоуга, Г.М.Миронова

КРИСТАЛЛОГРАФИЧЕСКИЕ ДАННЫЕ ДИСУЛЬФИДА ТАЛЛИЯ ГАЛЛИЯ

06:30	2		'ৰ্য্য
an Ang Ang			
Ed allow 200		Ē.	, ¹ ,

Балагуров А.М., Длоуга М., Миронова Г.М.

Кристаллографические данные дисульфида таллия галлия

На нейтронном дифрактометре по времени пролета определены кристаллографические данные дисульфида таллия галлия, Tl GaS₂. Кристалл имеет псевдотетрагональную симметрию со сверхструктурным периодом вдоль оси с, в 8,2 раза превышающим основной. Пр.гр. P2₁ или P2₁/m, **a = b =7,314+0,004**, c =59,99+0,03 Å, y =90° 10′+7′, V_c =3208,5 Å³,Z=32.

Работа выполнена в Лаборатории нейтронной физики ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1978

Balagurov A.M., Dlouga M., Mironova G.M. Pl4 - 11981

Crystal Data for Thallium Gallium Disulfide

Crystal data for thallium gallium disulfide, $TlGaS_2$, have been determined using the time-of-flight diffractometer. This compound has been found to be pseudotetragonal with a superstructure along the c axis, c/a = 8.2. Space group is either P2₁ or P2₁/m_{a=b=7}.314±0.004, c=59.99±0.03Å, y =90° 10′±7′, V_c = 3208.5Å, Z = 32.

The investigation has been performed at the Laboratory of Neutron Physics, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1978

© 1978 Объединенный институт ядерных исследований Дубна

В последнее время большое внимание уделяется получению и исследованию сверхрешеток, которыми принято называть многослойные периодические структуры с основным периодом от 3 до 10 Å, искаженным влиянием дополнительного потенциала с периодом, в десять и более раз превосходящим постоянную решетки / 1/. Кроме искусственно получаемых сверхрешеток, существуют соединения с естественным проявлением сверхпериодичности, например, сплавы типа СиАи, политипные полупроводниковые структуры, слоистые полупроводники и т.д. Представляет большой интерес как выявление такого рода соединений, так и изучение конкретных структурных особенностей, формирующих сверхпериод.

В настоящее время уже хорошо изучена сверхпериодичность в бинарных слоистых полупроводниках типа Ga Se^{/2/}. Существенно меньше сведений имеется о тройных халькогенидах, часто также образующих слоевую структуру. Кристаллографические данные о соединении впервые приведены в работе^{/3/}, в которой Tl'GaS, этому кристаллу приписана тетрагональная симметрия с параметрами ячейки а =7,29 \pm 0,05 и с =29,9 \pm 0,6 Å, с/а =4,1, т.е. обнаружена сверхструктура с учетверением основного периода вдоль оси с. В более поздней работе /4/ у изоморфного соединения Тℓ Ga Se, которое в/3/ классифицируется подобно $T\ell$ GaS, как имеющее тетрагональную симметрию, обнаружено иебольшое отклонение аксиального угла от 90° и увеличение периода вдоль оси с еще в два раза. Для параметров элементарной ячейки $T\ell GaSe_2$ в/4/приводятся значе-ния: $a = b = 7,60\pm0,08$, $c = 62,72\pm0,08$ Å, $\gamma = 90^{\circ}20^{\prime}\pm5^{\prime}$.

Таким образом, были основания полагать, что $T\ell \, GaS_2$ также является псевдотетрагональным и возможна сверхструктура с периодом, примерно в 8 раз превышающим основной.

Наши исследования были выполнены на импульсном реакторе ИБР-ЗО ЛНФ ОИЯИ с помощью нейтронного дифрактометра по времени пролета /ДВП/^{/5/}. Нейтронный ДВП обладает специфическими особенностями, позволяющими определять большие периоды в кристалле с хорошей точностью. Во-первых, он дает возможность проводить измерения сравнительно больших межплоскостных расстояний при углах рассеяния, близких к 180°, когда становятся малосущественными систематические ошибки, связанные с установкой и юстировкой кристалла. Во-вторых, метод времени пролета позволяет все измерения проводить при фиксированном угле рассеяния, т.е. исключаются какие-либо механические перемещения как образца, так и детектора, что также уменьшает влияние систематических ошибок.

Выбранный для эксперимента кристалл $T\ell \operatorname{GaS}_2$ имел вид пластины толщиной ~ 1 мм, площадью около 1 см². Ось \vec{c} элементарной ячейки кристалла перпендикулярна поверхности пластины. Основная часть экспериментальных данных получена при угле рассеяния 160°, контрольные измерения были выполнены при 2 θ =166°. Измерялись дифракционные спектры сечений [hol], [o k l.] и [h h l]. Экспериментальные данные об отражениях, которые затем использовались для определения параметров элементарной ячейки, приведены в *табл.1*.

Экспериментальные спектры обрабатывались по программе DIFPAT⁶, в которой для определения основных параметров дифракционного пика применяется метод совмещения некоторой модельной функции с реальным объектом /подробнее см.⁷⁷ /. В качестве моделей мы использовали наиболее интенсивные дифракционные пики от $T\ell GaS_2$: (OO88) для пиков с $\lambda < 2$ Å и (OO48) для пиков с $\lambda < 2$ Å и (OO48) для пиков с $\lambda > 2$ Å. Модельные пики проходили процедуру сглаживания и вводились в программу обработки в виде гистограммы.

Определенные таким образом положения пиков, обозначаемые далее P_{γ} , обрабатывались по программе

Таблица 1

Экспериментальные данные об отражениях от $T\ell GaS_2$ при θ =80° Приведены индексы Миллера, номер канала анализатора /при ширине канала 32 *мкс*/ и интегральная интенсивность пика в n/4.

HKL	<i>N</i> ,	I	HKL	Na	I
00 16	3 339	200	040	16 31	I I 4 9
0024	2228	99	080	818	3676
0032	1673	220	0 12 0	547	1038
0040	1339	137	0 I6 0	411	76
0044	1218	6			
0048	III7	I54I	0 2 30	15 69	380
0052	I033	5	0345	I 046	647
0056	958	1295	0575	631	49
00 72	746	I364			
00 80	673	21	0 I 27	I 898	60I
0088	612	1790	0254	951	490
0096	561	153			
00104	518	37	0448	922	I280
0 0 120	450	22	0 5 60	7 50	308
400	1631	696	2 2 20	174 6	969
800	818	2860	4 4 4 0	875	314
I2 0 0	547	730	6660	5 86	298
I6 0 0	4 11	47			
			2 2 28	I4 68	4296
I 029	1774	9IO ,	4 4 56	738	600
2 0 58	890	1201			
			2244	1080	7 56
4 0 32	I 169	86	4 4 88	542	420
5040	924	1079			
IO 0 80	465	104	440	II54	2784
			880	579	960

РАRАМ⁶⁶, с помощью которой определялись собственно параметры элементарной ячейки кристалла. Эта программа минимизирует функционал

$$\chi^2 = \Sigma (P_{\mathfrak{H}} - P_{B})^2 / \sigma^2,$$
 /1/

5

где P_B - вычисленное положение пика, σ^{-2} - весовые множители, сумма берется по экспериментальным точ-кам. Для вычисления P_B использовалась формула

$$P_{\rm B} = C_{\rm n} / {\rm H} + {\rm P}_{\rm 0} ,$$
 /2/

где $C_n = 2 \cdot \frac{m}{h} \cdot \frac{2 \sin \theta}{\tau_0}$ - постоянная прибора, в которую

входят m - масса нейтрона, h - постоянная Планка, \mathscr{L} - полное пролетное расстояние от замедлителя нейтронов до образца, τ_0 - ширина канала временного анализатора, P_0 - сдвиг между запуском анализатора и импульсом мощности реактора, H- модуль вектора обратной решетки, определяемый выражением

$$H^{2} = \sum_{i} \sum_{j} h_{i} h_{j} \vec{b}_{j} \vec{b}_{j} , \qquad /3/$$

где h_i - индексы Миллера, b_i - элементарные трансляции в обратной решетке кристалла, связанные с параметрами элементарной ячейки \vec{a}_i , системой уравнений $\vec{a}_i \vec{b}_j = \delta_{ij}$. δ_{ij} - символ Кронекера. Постоянная прибора определялась в измерениях со стандартными образцами /для этой цели использовались поликристаллы алмаза, кремния и молибдена/, при $2\theta = 160^\circ$ и $\tau_0 = 32$ мкс $C_n = /879, 79 \pm 0, 18$ /Å. Весовые множители в /1/ определялись из соотношения

$$\sigma^{2} = \sigma_{p}^{2} + \sigma_{0}^{2} + (\delta \cdot P_{3})^{2}, \qquad /4/$$

где σ_p^2 - статистическая дисперсия P_9 , σ_0 , и δ минимальные абсолютная и относительная погрешности. Величины σ_0 и δ вводились для выравнивания весов экспериментальных точек и полагались равными 0,05 и 0,0001 соответственно. При минимизации функционала /1/ варьировались | \dot{b}_i |, косинусы углов между \dot{b}_i и \dot{b}_i и величина P_0 .

Параметры элементарной ячейки определялись в две стадии: сначала находились величины b_1 , b_2 и b_3 из спектров от базисных плоскостей (hoo), (oko) и (ool) соответственно, затем при фиксированных b_i находились углы a^* , β^* и γ^* из спектров от сечений $[ok\ell]$, $[ho\ell]$ и $[hh\ell]$, соответственно, причем γ^* определялось при фиксированных a^* и β^* . В табл. 2 приведены экспериментальные и вычисленные положения пиков для плоскости (001), среднеквадратичные отклонения P, определенные по /4/, и величины отклонения P от P в единицах $\sigma:(P_3 - P_B)/\sigma$.

^В Для линейных параметров обратной решетки получены следующие значения:

$$b_1 = b_2 = 0.13674 \pm 0.00004 \text{ A}^{-1} (\chi_n = 0.90)$$

 $b_3 = 0.016671 \pm 0.000002 \text{ A}^{-1} (\chi_n = 2.21)$ /6/

для угловых параметров:

$$a^* = \beta^* = 90^{\circ}00' \pm 18' \qquad (\chi_n = 0,43)$$

$$\gamma^* = 89^{\circ}50' \pm 7' \qquad (\chi_n = 1,5),$$

$$/7/$$

здесь $\chi_n = (\chi^2/n-m)^{1/2}$, n - число экспериментальных точек, m - число варьируемых параметров. Контрольные измерения спектров от (001) при 2θ =166° дали для $b_3 = 0,016676 \pm 0,000002$ Å⁻¹, что в пределах двух статистических стандартных отклонений совпадает с результатом /6/.

Для параметров элементарной ячейки кристалла, предполагая, как и для Tl GaSe₂ пр.гр. P2₁ или P2₄/m, имеем из /6/ и /7/:

$$a = b = 7,314 \pm 0,002 \text{ Å}$$

$$c = 59,986 \pm 0,005 \text{ Å}$$

$$/8/$$

$$v = 90^{\circ}10' \pm 7'$$

Хотя точность определения аксиального угла γ невелика, факт удвоения параметра с по сравнению с величиной, найденной в^{/3/}, несомненен, т.к. наблюдалось большое число пиков с нечетными ℓ / (1029), (0345), (0127) и др./.

Таблица 2

Экспериментальные и вычислительные	положения	<u>ди-</u>
фракционных пиков от плоскости (001)	Tl Ga S 2	при
θ =80°, n - номер порядка отражения	-	-

n	N ₉	<i>с</i>	Np	x
16	3339,0	0,4	3340,0	-3,2
24	2228,4	0,2	2228,5	0,3
32	1672,9	0,2	I672,7	I,0
4 0	I339, 5	0,2	1339,2	I,8
44	1218,5	0,4	1217,9	I,5
4 8	III7 , 3	0,1	III6, 8	3,6
52	1033,0	0,9	1031,3	1,9
56	958,0	0 , I	958,0	-0,6
72	745,9	0,1	764,3	-3,9
80	673,3	0,6	672,2	· I,8
88	6II , 8	0,I	611,5	2,6
96	560, 8	0,1	561, 0	-I.8
104	517,8	0,2	518,3	-2,3
120	449,6	0,3	449,8	-0,9

Ошибки параметров в /8/ не учитывают неопределенности в постоянной прибора и неточностей при установке и юстировке образца. При $2\theta = 160^{\circ}$ все систематические погрешности составляют примерно $5 \cdot 10^{-2}$ %. Учтя их, получим окончательные кристаллографические данные для $T\ell GaS_{2}$.

Симметрия: Р21 или Р21/т

a = b = 7,314 ± 0,004 Å
c = 59,99 ± 0,03 Å, c/a = 8,2
$$y$$
 = 90°10' ± 7'

$$V_{e} = 3208.5 \text{ Å}^{3}$$
 /9/
Z = 32.

Эти величины фактически равны /с учетом удвоения "с"/ значениям параметров из работы^{/3/}, но точность их определения более чем в 10 раз лучше.

Итак, $T\ell \operatorname{GaS}_2$, аналогично $T\ell \operatorname{GaSe}_2$, обнаруживает /при комнатной температуре/ сверхструктурный период около 60 Å. Выяснение конкретного механизма образования сверхструктуры требует определения положения атомов в ячейке.

В заключение авторы благодарят К.Р.Аллахвердиева за предоставление кристалла.

ЛИТЕРАТУРА

- Проблема высокотемпературной сверхпроводимости под ред. В.Г.Гинзбурга и Д.А.Киржница. "Наука", М., 1977; Голубев Л.В., Леонов Е.И. Сверхрешетки. "Знание", М., 1977.
- 2. Kuhn A., Chevy A., Chevalier R. Phys.St.Sol. 1975, 31A, p. 469.
- 3. Hahn[•] H., Wellman B. Naturwissenshaften, 1967, 54, p. 42.
- 4. Isaaks T.J. J.Appl.Cryst. 1973, 6, p. 413.
- 5. Ананьев Б.Н. и др. ОИЯИ, 13-11113, Дубна, 1977.
- 6. Балагуров А.М. и др. ОИЯИ, РІО- 11106, Дубна, 1977.
- 7. Zlokazov V.B. Comp. Phys. Comm. 1978, 13, р. 389. Злоказов В.Б. ОИЯИ, Р10-10350, Дубна, 1977.

Рукопись поступила в издательский отдел 26 октября 1978 года.