ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

2550/2-77

¥/7-74 P14 - 10446

Ю.Бух, Н.И.Балалыкин, Д.А.Мурадян, А.В.Скрыпник

ОПРЕДЕЛЕНИЕ ХИМИЧЕСКОГО СОСТАВА ПЛЕНОК **NbTi** МЕТОДОМ УПРУГОГО РАССЕЯНИЯ ³Не

P14 - 10446

Ю.Бух, Н.И.Балалыкин, Д.А.Мурадян, А.В.Скрыпник

ОПРЕДЕЛЕНИЕ ХИМИЧЕСКОГО СОСТАВА ПЛЕНОК **NbTi** МЕТОДОМ УПРУГОГО РАССЕЯНИЯ ³Не

Направлено в журнал "Физика низких температур"

COLORENUCIUSES DECTHEY) (interstoperson) GNG MALYTERA .

Бух Ю. и др.

Определение химического состава пленок NbTi методом упругого рассеяния ³ Не

Определен химический состав сверхпроводящих пленок NbTi методом упругого рассеяния частиц ³He. Показано, что анализ состава пленок на основе полученных значений параметров энергетических потерь [s] можно проводить до голщины пленок 10000 Å. Точность определения химического состава при этом не хуже 0,1 ат.% и может быть существенно увеличена.

Работа выполнена в Отделе новых методов ускорения ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1977

Buch J. et al.

P14 - 10446

Determination of the Chemical Composition of Thin NbTi Films by Elastic Scattering of ${}^{3}\text{He}$

The chemical composition of the superconducting NbTi films has been determined by elastic scattering of ³He. It is shown that the chemical analysis of thin films based on the obtained energy loss parameters [s], can be performed for the films of thickness up to 10.000 Å.

The accuracy of determination of the chemical composition in this case is not worse than O.latom.% and can be essentially increased.

The investigation has been performed at the Department of New Acceleration Methods, JINR.

Preprint of the Joint Institute for Nuclear Research, Dubna 1977

В последнее время в физике твердого тела, поверхностей и тонких пленок начинают широко применяться ядерно-физические методы анализа /1,2/.

В ОНМУ совместно с ЛНФ была разработана установка и освоена методика для определения химического состава тонких пленок с использованием упругого рассеяния ³He^{/3/}.

Освоение этой методики вызвано необходимостью получения сверхпроводящих пленок NbTi с высокими электрическими параметрами и однородностью физикохимических и механических свойств на большой площади в связи с разработкой ускоряющих элементов резонаторов кольцетрона / $f_0 = 500 M \Gamma u/$

В данной работе приводится анализ химического состава сверхпроводящих пленок NbTi. Пленки NbTi различного состава, а также чистые пленки Nb и Ti были приготовлены на подложках из монокристаллического кремния методом электронно-плазменного /ЭП/ испарения в вакууме. Установка и конструкция ЭП испарителей описаны в работах $^{5,6/}$. Применение криосорбционного и магниторазрядного насосов позволяло вести процесс конденсации пленок в безмасляном /сухом/ вакууме при $P \leq 8 \cdot 10^{-8}$ Top.

Исследуемые образцы устанавливались в камере рассеяния в многопозиционном держателе и подвергались бомбардировке коллимированным пучком ионов ³Не с энергией $E_0 = 3,0$ *МэВ*. Анализируемая площадь образца равнялась 1,5 *мм*² Спектры рассеянных частиц регистрировались поверхностно-барьерным кремниевым детектором, расположенным под углом 135[°]. Энергетическое разрешение спектрометрического канала составляло 20 кэВ. Спектры регистрировались многоканальным анализатором импульсов типа DIDAC на 1000 каналах.

Анализ энергетических спектров от исследуемых пленок позволяет определять атомные массы различных элементов, присутствующих в пленках или на их поверхностях, а также их распределение по толщине пленок.

На *рис. 1* и 2 представлены энергетические спектры пленок Ті и Nb различной толщины, конденсированных на кремниевые подложки.

Зеркальная поверхность подложек, получаемая в результате тщательной механической обработки и химической полировки в парах HCl при температуре 950 °C, позволяла определять толщину пленок с точностью ±30 Å методом многократной интерференции монохроматического света на микроскопе VARIAN.

Рис. 1. Энергетические спектры частиц ³Не, упруго рассеянных от пленок титана различной толщины. Материал подложки - кремний.

Рис. 2. Энергетические спектры частиц ³Не, упруго рассеянных от пленок ниобия различной толщины. Материал подложки - кремний.

Энергия Е₁ рассеивающихся от поверхностей пленок частиц ³ Не определяется по формуле / '7,8/

$$E_{1} = E_{0}K = E_{0} \left\{ \frac{m_{1}\cos\Theta + (m_{2}^{2} - m_{1}^{2}\sin\Theta)^{\frac{1}{2}}}{m_{1} + m_{2}} \right\}^{2}, \qquad /1/$$

где E_0 - энергия частиц пучка в *МэВ*; K_{sc} - кинематический фактор рассеяния; m_1 , m_2 - атомные массы частиц пучка и мишени; $\Theta = 135^\circ$ - угол рассеяния в лабораторной системе координат.

Вследствие энергетических потерь пучка при его прохождении через пленку спектры имеют разную ширину. Между толщиной пленок d и шириной спектров ΔE /определяется на половине высоты спектров/ существует до определенной толщины пленок - зависимость /9/

4

Рис. 3. Зависимость энергетической ширины спектров ΔE титана и ниобия от толщины пленок.

$$\Delta E = [S] \cdot d$$
, /2/

где [S] - параметр энергетических потерь в $\partial B/A$. На *рис.* 3 представлены зависимости ΔE от толщины пленок Ті и Nb. По углу наклона прямых вычислены значения [S] _{Ті} = 68 $\partial B/A$ и [S] _{Nb} = 81 $\partial B/A$.

Параметр энергетических потерь [S] зависит от K_{sc} и линейных потерь энергии dE/dx /тормозная способность//10/:

$$[S] = K_{sc} \frac{dE}{dx} \Big|_{E_0} + \frac{1}{\cos \Theta} \frac{dE}{dx} \Big|_{K}.$$
 (3/

Величина dE/dx в более общем виде выражается через массовую тормозную способность

$$\epsilon = \frac{1}{N} \frac{dE}{dx}, \qquad /4/$$

где N - количество атомов вещества в единице объема $/ c M^{-3} / .$

Как видно из рис. 3, величины ΔE для Ti и Nb с высокой точностью ложатся на прямые. Это означает постоянство параметров энергетических потерь [S]_{Ti} и [S]_{Nb} в данном интервале толщин пленок /для титана до d = 13360 Å, для ниобия до d = 10200 Å/. Таким образом, использование полученных значений [S]_{Ti} и [S]_{Nb} для анализа состава пленок NbTi до толщин порядка 1 мкм при фиксированном угле рассеяния не требует знания зависимости тормозного сечения от энергии.

При анализе пленок NbTi толщиной до 4000 Å, а также пленок более толстых /до 7000 Å/, но с малым содержанием ниобия /образцы №87 и 88/ получаются энергетические спектры с отдельными пиками /см. рис. 4/,

Рис. 4. Энергетические спектры частиц ³ Не, упруго рассеянных от ниобий-титановых пленок.

площадь которых A /в отсчетах/ соответствует поверхностной концентрации N / cm^{-2} / и равна^{/2/}:

$$\mathbf{A} = \mathbf{Q} \cdot \mathbf{\Omega} \cdot \boldsymbol{\sigma} \cdot \mathbf{N}_{s} = \mathbf{Q} \cdot \mathbf{\Omega} \cdot \boldsymbol{\sigma} \cdot \mathbf{N} \cdot \mathbf{d}, \qquad /5/$$

где Q - число падающих на пленку частиц ³ Не, определенное по измерению тока пучка /для всех проведенных экспериментов это значение оставалось постоянным и было равно Q = 9,89 · 10¹⁴ частиц ³ Не/; Ω - телесный угол активной поверхности детектора; σ - дифференциальное сечение упругого рассеяния, определенное по формуле Резерфорда /11/:

$$\sigma = \left(\frac{Z_1 Z_2 e^2}{2E_0 \cdot \sin \Theta}\right)^2 \frac{\left\{\cos \Theta + \left[1 - \left(\frac{m_1}{m_2} \sin \Theta\right)^2\right]^{\frac{1}{2}}\right\}^2}{\left[1 - \left(\frac{m_1}{m_2} \sin \Theta\right)^2\right]^{\frac{1}{2}}}, \ \frac{1}{6}$$

где Z₁, Z₂ - атомные номера частиц пучка и элементов анализируемых пленок, е - заряд электрона.

Значения К_{вс} и *о* для нашего случая, используемые при анализе энергетических спектров, представлены в *табл.* 1.

Соотношение атомных концентраций вычисляется по следующему выражению:

$$\frac{N_{Ti}}{N_{Nb}} = \frac{A_{Ti}}{A_{Nb}} \cdot \frac{\sigma_{Nb}}{\sigma_{Ti}}, \qquad /7/$$

а содержание элементов в атомных процентах получаем из соотношения

 $N_{Ti} + N_{Nb} = 100\%$. /8/

Спектры от более толстых пленок NbTi / d = = 4000 $A \div 10000 \text{ Å}$ / вследствие энергетических потерь получаются более сложной формы, происходит их расширение и наложение /см. *рис.* 5/. Точность анализа в этом случае зависит от точности разложения спектров по отдельным элементам. Результаты расчетов для всех исследованных пленок NbTi приведены в *табл.* 2.

Для образца №95 площади, соответствующие чистым элементам Nb и Ti, заштрихованы / puc. 5/. Значения кинематического фактора рассеяния К_{вс} и дифференциального сечения упругого рассеяния *о* для некоторых элементов периодической таблицы.

Таблица 1

		and the second distance of the second distanc		
Эле- мент	Z ₂ -ат. номер	m ₂ -ат. Macca	σ	K _{sc}
Li Be B C N O F ^e Na Ali S I S C I r K C a E C N O F N O S N O F N O S N O S N O S N O S N O S N O S N O S N O S N O S N O S N O S N O S N S N	3 4 5 6 7 8 9 10 11 12 14 15 16 17 18 9 20 11 12 14 15 16 17 18 9 20 21 22 24 25 27 8 9 31 23 34 55 6 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23 24 5 5 7 8 9 31 33 34 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 22 24 25 26 7 8 9 31 22 23 24 5 5 7 8 9 31 22 22 23 24 5 5 7 8 9 31 22 22 23 24 5 5 7 8 9 31 22 23 24 5 5 7 8 9 31 22 22 22 24 25 5 7 8 9 31 22 22 23 24 25 25 26 7 20 31 22 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	6,93 9,01 10,81 12,01 14,00 15,99 20,18 22,98 24,31 26,98 28,08 30,97 32,06 35,45 39,95 39,10 40,08 44,95 47,90 50,94 51,99 54,94 55,84 55,84 55,84 55,84 55,84 55,84 55,37 63,54 65,37 69,72 72,59 74,92 78,96 79,91 83,80 85,47	4,691E-26 9,561E-26 1,579E-25 2,329E-25 3,253E-25 5,553E-25 6,885E-25 6,885E-25 6,885E-25 1,001E-24 1,80E-24 1,371E-24 1,578E-24 2,034E-24 2,034E-24 2,546E-24 2,546E-24 2,546E-24 2,546E-24 2,546E-24 3,117E-24 3,117E-24 3,12E-24 4,22E-24 3,12E-24 4,22E-24 3,12E-24 4,22E-24 3,12E-24 4,22E-24	2,019E-01 3,039E-01 3,756E-01 4,163C-01 4,738E-01 5,213E-01 5,984E-01 6,375E-01 6,375E-01 6,924E-01 7,249E-01 7,249E-01 7,249E-01 7,727E-01 7,727E-01 7,734E-01 7,734E-01 8,066E-01 8,204E-01 8,204E-01 8,317E-01 8,398E-01 8,398E-01 8,505E-01 8,544E-01 8,528E-01 8,528E-01 8,528E-01 8,579E-01 8,779E-01 8,792E-01 8,792E-01 8,792E-01 8,792E-01 8,845E-01 8,866E-01
Sr Y Zr	38 39 40	87,62 88,90 91,22	1,025E-23 1,080E-23 1,136E-23	8,992E-01 8,907E-01 8,934E-01

8

Продолжение таблицы 1

Эле- мент	Z ₂ - ат. номер	^m 2 ⁻ ат. масса	σ	K _{sc}
Mo Te Ruh Pag Cdn Spb Te Spa La Spa La Spa La Spa La Spa La Spa La Spa La Spa La Spa La Spa La Spa Spa La Spa Spa Spa Spa Spa Spa Spa Spa Spa Sp	42 44 44 45 46 47 48 50 51 53 55 55 55 77 77 78 90 12 53 45 56 77 77 78 90 12 53 45 56 77 77 78 90 12 53 45 66 7 88 90 90 92	95,94 98,00 101,07 102,90 106,40 107,87 112,40 114,82 118,69 121,75 127,60 126,90 131,30 132,90 137,34 138,91 178,49 180,94 183,85 186,20 190,20 192,20 195,09 126,96 200,59 204,37 207,19 206,98 210,00 222,00 223,07 226,00 223,07 232,03 231,00 238,03	1,253E-23 1,313E-23 1,375E-23 1,439E-23 1,503E-23 1,570E-23 1,706E-23 1,777E-23 1,922E-23 1,997E-23 2,073E-23 2,073E-23 2,150E-23 2,310E-23 2,310E-23 3,687E-23 3,687E-23 3,790E-23 3,687E-23 3,790E-23 3,894E-23 4,000E-23 4,000E-23 4,217E-23 4,217E-23 4,552E-23 4,439E-23 4,552E-23 4,552E-23 4,552E-23 5,019E-23 5,00E-2	8,983E-01 9,004E-01 9,032E-01 9,049E-01 9,079E-01 9,091E-01 9,126E-01 9,143E-01 9,170E-01 9,226E-01 9,221E-01 9,225E-01 9,235E-01 9,236E-01 9,286E-01 9,447E-01 9,462E-01 9,462E-01 9,462E-01 9,462E-01 9,462E-01 9,462E-01 9,500E-01 9,500E-01 9,500E-01 9,500E-01 9,522E-01 9,522E-01 9,522E-01 9,522E-01 9,555E-01 9,555E-01 9,555E-01 9,557E-01 9,566E-01 9,566E-01 9,577E-01

Определение состава пленок можно осуществить и измерением высот плато спектров для соответствующих элементов H_{Ti} и H_{Nb} /в отсчетах на канал/, т.к. в общем случае при увеличении толщины пленки на величину δx количество актов рассеяния вычисляется из /11/,/12/.

$$\mathbf{H} = \mathbf{Q} \cdot \mathbf{\Omega} \cdot \boldsymbol{\sigma} \cdot \mathbf{N} \cdot \delta \mathbf{x} = \mathbf{Q} \cdot \mathbf{\Omega} \cdot \boldsymbol{\sigma} \cdot \mathbf{N} \cdot \frac{\delta \mathbf{E}}{[\mathbf{S}]}$$
 /9/

Н

Н

 $\delta \mathbf{E} = [\mathbf{S}] \cdot \delta \mathbf{x} , \qquad /10/$

где δE - энергетическая ширина канала /в нашем случае она равна 2,13 кэB/.

Так как анализ производится при неизменной геометрии / Ω и Θ - постоянны/ и одинаковом числе частиц ³ Не / Θ - постоянно/, получаем:

$$H_{Ti} \approx N_{Ti} \cdot \sigma_{Ti} [S]_{Ti},$$

$$H_{Nb} \approx N_{Nb} \cdot \sigma_{Nb} [S]_{Nb}$$
(11/

$$\frac{N_{Ti}}{N_{Nb}} = \frac{H_{Ti}}{H_{Nb}} \cdot \frac{\sigma_{Nb}}{\sigma_{Ti}} \frac{[S]_{Ti}}{[S]_{Nb}} \cdot \frac{(12)}{(12)}$$

Таблица 2

Химический состав ниобий-титановых пленок

Образец	№87	№88	№92	N°93	№95	№96
Химический состав в ат.% N _{Ti} :N _{Nb}	90,5 9,5	<u>90,02</u> 9,98	<u>41,4</u> 58,6	<u>46,87</u> 53,13	<u>39,49</u> 60,51	<u>38,1</u> 61,9

10

Рис. 5. Энергетические спектры частиц ³Не_, упруго рассеянных от ниобий-титановых пленок.

Значения [S]_{Ti} и[S]_{Nb} определены в этой работе. Значения Н_{Ti} и Н_{Nb} найдены из соответствующих спектров /для образца №93 показаны на *рис. 5*/.

Сравнение результатов по определению состава методом разложения спектров и сиспользованием параметров энергетических потерь [S] по формуле /12/ дало расхождение не более O,1 ат. %.

Результаты такого же порядка получаются при определении состава пленок по характеристическому рентгеновскому излучению /данные получены на электронном микрозонде JXA-5A Fy JEOL /.

Повышения точности определения состава пленок до значений более O,1 ат. % можно добиться увеличением статистики - увеличением времени облучения пленок.

Выводы

1. Освоена методика анализа состава пленок NbTi толщиной до 10000 \mathring{A} с помощью упругого рассеяния ³Не на большие углы.

2. Измерены энергетические спектры пленок титана и ниобия различной толщины.

3. Получены значения параметров энергетических потерь [S]_{Ti} = 68 \mathcal{B}/A и [S]_{Nb} = 81 \mathcal{B}/A для энергии частиц ³Не 3,0 *МэВ*, которые можно использовать для быстрого химического анализа пленок с точностью до 0,1 ат.%.

4. Точность определения химического состава пленок NbTi может быть еще значительно увеличена.

Литература

- 1. Chu W. et al. Thin Sol.Films, 1973, 17, 1.
- 2. Mayer J., Turost A. Thin Sol.Films, 1973, 19, 1.
- 3. Бух Ю. и др. ОИЯИ, Р14-10021, Дубна, 1976.
- 4. Агеев А. и др. ОИЯИ, 9-9363, Дубна, 1975.
- 5. Балалыкин Н., Муратов Ю., Рубин Н. ОИЯИ, P8-6855, Дубна, 1972.
- 6. Балалыкин Н. и др. ОИЯИ, Р8-6863, Дубна, 1972.
- 7. Ziegler J. This Sol.Films, 1973, 19, 289.
- 8. Habanec J. et al. Y. Radioanal. Chem., 1973, 13, 213.
- 9. Linker G., Meyer O., Gettings M. Thin Sol. Films, 1973, 19, 177.
- 10. Meyer O., Linker G., Kraeft B., Thin Sol.Films, 1973, 19, 217.
- 11. Ziegler J., Lever R. Thin Sol. Films, 1973, 19, 291.
- 12. Feng J. et al. Thin Sol.Films, 1973, 19, 195.
- 13. Gyulai J. et al. J.Appl.Phys., 1971,42,451.

Рукопись поступила в издательский отдел 15 февраля 1977 года.