

Объединенный институт ядерных исследований дубна

P13-94-515

Я.Ружичка¹, Ш.Шаро¹, В.П.Зрелов, П.В.Зрелов, Э.Д.Лапчик, Г.Гейссел², Г.Ирних², Х.Кожухаров², Г.Мюнценберг², Ф.Никкел², Х.Шейденбергер², Г.-Й.Шотт², В.Шваб², Т.Штоелкер², А.Магел³, Б.Фосс⁴

ИССЛЕДОВАНИЕ ВОЗМОЖНОСТЕЙ ПРИМЕНЕНИЯ ЧЕРЕНКОВСКОЙ МЕТОДИКИ ДЛЯ ИЗМЕРЕНИЯ СРЕДНЕЙ ЭНЕРГИИ ПУЧКОВ РЕЛЯТИВИСТСКИХ ЯДЕР ¹⁹⁷Аи В ОБЛАСТИ ЭНЕРГИЙ 0,64÷0,99 ГэВ/а.е.м.

Направлено в журнал «NIM»

¹Университет им.Коменского, Братислава, Словакия ²ГСИ, Дармштадт, Германия ³Университет Гессен, Германия ⁴ВТУЗ, Дармштадт, Германия

1. Введение

Методика измерения средней энергии коллимированных пучков таких элементарных однозарядных частиц, как протон, по излучению Вавилова – Черенкова (ИВЧ) впервые была применена Мазером [1] в 1951 году. Впоследствии она неоднократно совершенствовалась и видоизменялась [2 - 8]. Достигнутая точность измерений в области энергий протонов ≈ 660 МэВ составила ~0,1%.

Однако перенос этой методики на пучки релятивистских ядер с $Z \gg 1$ требует экспериментальной проверки, поскольку такие эффекты, как фрагментация ядер в радиаторе [9], эначительные изменения угла испускания ИВЧ из-за их сильного торможения [10] и возможное изменение показателя преломления радиатора вблизи траектории ядер, могут повлиять на результаты измерений. В изложенных ниже исследованиях использовались два черенковских метода на пучках ядер ¹⁹⁷ Au от фрагмент-сепаратора (FRS) ускорителя SIS (ГСИ, Дармштадт).

2. Измерения средней энергии ядер ¹⁹⁷₇₉ Au от ускорителя SIS по ИВЧ методом "комби"

Описание метода

Такой метод использования ИВЧ для подобных измерений (по существу, представляет собой комбинацию так называемого простого метода [5, 7] и ахроматического [4]) был предложен в работе [8].

Схематически его устройство показано на рис. 1. Призма-радиатор 1 была выполнена из плавленого кварца с углами $\alpha_1 = \alpha_2 = 30^\circ$, что обеспечивало условие превышения угла испускания ИВЧ в призме в диапазоне энергий работы прибора $0,95 \le E \le 1$ ГэВ/а.е.м.

Угол А ахроматической призмы 2 рассчитывался на основании формул, вытекающих из условий преломления ИВЧ в приборе и имеющих вид

$$\cos A = -\xi \sin \gamma_1 + \cos \gamma_1 \sqrt{1 - \xi^2},\tag{1}$$

ОСЪСЛЫСТВИМЯ КАСТАТУТ СМСИЗНАХ ИССЛЕДОВЛНОЙ БИБЛИОТЕКА

где

$$I = \frac{1}{\sqrt{1 - \left(\frac{K}{\Delta \gamma_1}\right)^2}}; \quad \sin \gamma_1 = \frac{n_1}{n_3}p; \quad p = \sin(\Theta - \alpha);$$
$$K = \frac{\Delta n_3}{n_3} - \frac{\Delta n_2}{n_2}; \quad L = \frac{\Delta n_1}{n_1} - \frac{\Delta n_3}{n_3};$$
$$\Delta \gamma_1 = \frac{Lp + \Delta\Theta\sqrt{1 - p^2}}{\sqrt{n_3^2 - n_1^2p^2}} \cdot n_1; \quad \Delta\Theta = \frac{\Delta n_1}{n_1^2\beta\sin\Theta}.$$

В качестве материала было выбрано стекло марки ТФ-1. Измеренные на контрольных призмах с помощью гониометра ГС-5 показатели преломления n_1 и n_3 призм 1 и 2 представлены в табл.1.

Таблица 1

λ ,нм	$n_1(SiO_2)$	$n_3(T\Phi-1)$	п2(воздух)	<u>, , , , , , , , , , , , , , , , , , , </u>
404,7	1,46970	1,68155	1,000275	1.48
546,1	1,46022	1,65147	1,000273	02
579	1,45893	1,64777	1,000272	200

Точность определения показателей преломления составила $\pm 2 \cdot 10^{-5}$. По формуле (1) и данным по n_1 и n_3 , взятым из каталогов, величина угла А при $\beta = 0,8761$ получилась равной А_{расч.} = 25°42′29″, а реально изготовленная призма, использованная в эксперименте, имела угол $\bar{A} = 25°42'34″ \pm 10″$.

Рис.1. Ход лучей в приборе "комби": 1 — приома-радиатор; 2 — ахроматическая приэма; 3 — юстировочная грань

Особенностью этого метода является то, что грань Ш призмы-радиатора зеркальна полностью, а боковые грани I и II — в шахматном порядке (см. рис.1). Это позволяет выводить через грани I и II как прямое излучение, так и дважды отраженное.

Схема всего прибора "комби" показана на рис.2. Коллимированный пучок 1 ядер $_{79}^{197}Au$ диаметром 5 мм пропускался через призму-радиатор ϑ , в которой испускалось ИВЧ. Как прямое ИВЧ (сплошная линия), так и дважды отраженное (пунктирная линия) после прохождения ахроматической призмы 4 отводилось плоскими зеркалами 5 в сторону от пучка частиц, где регистрировалось фотоаппаратом с объективом ϑ , настроенным на бесконечность.

Рис.2. Схема прибора "комби": 1 пучок; 2 — коллиматор; 3 — призмарадиатор; 4 — ахроматическая призма; 5 — плоское веркало; 6 — фотоаппарат с объективом "Гелиос-40"

Пример изображений ИВЧ (прямого и дважды отраженного), зарегистрированных на фотопленке, показан на рис.3.

Рис.3. Пример изображений ИВЧ, полученных в одной из экспозиций с прибором "комби": 1 — изображение "прямого" ИВЧ, 2 — изображение ИВЧ дважды отраженного

2

1

Минимальное расстояние l_{1-2} между черенковскими пиками 1 и 2 определяет скорость частиц β_0 в пучке в соответствии с формулой [12]:

$$\beta_0^2 = \frac{(2K' + tg^2 2\alpha_1) + \sqrt{tg^2 2\alpha_1 [4K'(1 - K') + tg^2 2\alpha_1]}}{2K'^2 n_1^2},$$
(2)

где

$$\begin{split} K' &= \frac{K}{\cos 2\alpha_1}; \quad K = \cos^2 \alpha_1 - \frac{n_3^2}{n_1^2} \sin^2 \gamma_1^1; \quad \sin^2 \gamma_1^1 = 1 - (p + \sqrt{p^2 - M^2})^2; \\ p &= \frac{n_2}{n_3} \sin \varphi_1 \sin A_1^I; \quad M = \frac{n_2^2}{n_3^2} \sin^2 \varphi_1 - \cos^2 A_1^I; \quad \varphi_1 = \frac{l_1 m_1 + \Delta \varphi}{2} + \bar{A}; \\ \bar{A} &= \frac{A_1^I + A_2^{II}}{2}, \quad \Delta \varphi = \Delta \varphi_{\Delta \alpha} + \Delta \varphi_{\Delta A}, \end{split}$$

а m_1 — калибровочный коэффициент перевода линейного расстояния l_1 на фотопленке в градусы.

Поскольку в данном приборе использовались призмы-радиаторы и ахроматические призмы, изготовленные с высокой точностью $\Delta \alpha = 2(\alpha_1 - \alpha_2) = \pm 20''$ и $\Delta A = A_1^{I,II} - A_2^{I,II} = \pm 10''$, то в расчетах полагалось $\Delta \phi = 0$, а ошибки $\Delta \alpha$ и ΔA учитывались при определении энергии (см. ниже табл.3).

Результаты измерений

Фотометрическая кривая негативного изображения ИВЧ (см. рис.3) приведена на рис.4. Как видно из рисунка, основная проблема определения энергии методом "комби" для пучка тяжелых ядер заключается в том, что пики ИВЧ имеют более сложный (негауссовский) вид по сравнению с тем, что имеет место для пучков протонов. Такая форма черенковских пиков, по нашему мнению, обусловлена большими ионизационными потерями ядер 79Au в самом радиаторе, а также фрагментацией (максимальная толщина призмы-радиатора из SiO_2 t = 6,05 мм).

Поэтому определение среднего расстояния, а следовательно, и средней энергии в центре радиатора (по центру максимума), становится эатруднительным.

В связи с этим нами была принята процедура определения средней энергии пучка не в центре радиатора, а на входе в него исходя из минимального расстояния между пиками на их полувысотах $h_{1/2}^I$ и $h_{2/2}^{II}$.

Минимальные расстояния l_{1-2} и соответствующие им энергии E_{ch} , вычисленные по такой процедуре, полученные с помощью автоматического сканирования на автомате АЛТ-2/130 [13], приведены в табл.2.

Ошибка измерений данным методом составляет ±1,4 МэВ/а.е.м. при 960 МэВ/а.е.м. и складывается из отдельных факторов, приведенных в табл.3.

Таблица 2

Номер Минимальное расстояние		<i>Есh</i> , МэВ/а.е.м.	<i>Е</i> <u>́₄</u> , МәВ/а.е.м.
экспозиции	l ₁₋₂ , мм	and the states	Δ 3
1	$15.684 \pm 0.094 \\ 0.068$	991.52	987.38
2	$17.665 \pm 0.065 \\ 0.061$	956.72	958.1
3	$19.577 \pm 0.055_{0.107}$	926.27	928.0

3. Измерения средней энергии пучка ядер ¹⁹⁷₇₉ Au по ИВЧ ахроматическим методом

Поскольку методика "комби" с данной ахроматической приэмой ограничена диапазоном энергий 900 МэВ/а.е.м. $\leq E \leq 1000$ МэВ/а.е.м., для более низких энергий ~ 660 МэВ/а.е.м. измерения проводились другим черенковским прибором — $(E - \alpha)$, использовавшимся ранее [11] на протонах с энергией 660 МэВ.

В связи с этим в этом разделе приводится только краткое описание метода и результаты измерений. Схема метода показана на рис.5. Устройство помещалось за сепаратором *FRS*. Пучок ядер ¹⁷⁹₇₉Au, с энергией около 670 МэВ/а.е.м., после прохождения нескольких мишеней и коллимирования (длина коллиматора

5

Рис.5. Ахроматическое черенковское устройство (ход лучей): 1 — радиатор; 2 — ахроматическая призма; 3 — реперная призма

Рис.6. Фотографические изображения двух частей черенковского конуса и реперные метки, варегистрированные фотоаппаратами слева и справа от пучка частиц

Таблица 3

Характеристика	Ошибка измерений	ΔE , MəB/a.e.m.
Показатель преломления	$\pm 2 \cdot 10^{-5}$	$\pm 0,08$
призмы-радиатора		
Угол призмы-радиатора	±20″	$\pm 0,41$
Угол ахроматической призмы,	±10″	$\pm 0, 1$
ΔA		
Показатель преломления	 ±2 · 10^{−5} 	$\pm 0,025$
ахроматической призмы, Δn_A	a second second	
Остаточная дисперсия	±50"	$\pm 0,68$
Расстояние l_{1-2} между	$\pm 0,075$	$\pm 1, 16$
"пиками" ИВЧ ∆l ₁₋₂ ,мм		
Среднеквадратичная ошибка	$E = \pm 1,41$ МэВ/а.е.м.	

600 мм, диаметр 5мм) попадал на плоскопараллельный радиатор 1 из LiF толщиной 1,5 мм. Часть конуса ИВЧ, испускаемого в радиаторе, проходила через ахроматическую призму 2 и после этого отклонялась зеркалом к объективу фотоаппарата, настроенного на бесконечность.

На рис.6 приведены фотографические изображения части черенковского кольца слева и справа от пучка частиц. На рис.7 показаны результаты фотометрирования одного из черенковских изображений (рис.6). Вблизи черенковского пика \mathcal{S} видны узкие реперные метки 1 и \mathcal{L} , которые служат для определения абсолютного угла черенковского конуса внутри радиатора. Используя соответствующее соотношение для направленности ИВЧ соз $\Theta = 1/n\beta$, путем подстановки в него измеренного угла Θ и известного показателя преломления n можно определить абсолютное значение скорости частиц β .

7

Рис.7. Фотометрическая кривая одного из черенковских изображений, показанных на рис.6. Расстояние \bar{L}_0 между центрами реперных меток (1) и (2) и центром пика (3) черенковского конуса определяет энергию частиц в центре радиатора LiF

Определенное расстояние $\bar{L}_0 = 5, 0 \pm 0, 1$ мм соответствует средней энергии ядер $^{197}_{79}Au \ \bar{E} = 641, 1 \pm 0, 9$ МэВ/а.е.м. в центре радиатора. Расчетная зависимость энергии E от расстояния L_0 приведена на рис. 8. Оптические постоянные устройства определены очень точно ($\Delta n = \pm 2 \cdot 10^{-5}$, а углы A, ϕ, ϵ с точностью $\pm 5''$), а поскольку и остаточная дисперсия после ахроматической призмы была также мала, то основную ошибку в определении \bar{E} вносит ошибка измерения \bar{L}_0 .

Энергия пучка ядер Au определялась также исходя из данных ускорителя SIS с учетом потерь энергии на всем пути частиц до местонахождения черенковского устройства, и в центре радиатора LiF она получилась равной 638,8 MэB/а.е.м. Разница между двумя методами составляет 2,3 MэB/а.е.м. Беря в расчет точность определения энергии SIS около 0,8 MэB/а.е.м., величину ошибки черенковской методики ~ 0,9 MэB/а.е.м., а также неопределенность в толщинах материалов 1-2% (соответствующие 1-2 MəB/а.е.м.), мы видим, что полученные результаты демонстрируют хорошее согласие между двумя методами.

4. Проверка точности выполнения черенковского соотношения направленности для пучка ядер ¹⁹⁷₇₇ Au в области энергий 0,64÷1,0 ГэВ/а.е.м.

В настоящей работе энергия ядер в пучке наряду с черенковской методикой определялась исходя из энергии ядер от ускорителя $SIS E_1 = 1060 \text{ МэB}/a.е.м.$ (для первого метода) и $E_2 = 750 \text{ МэB}/a.е.м.$ (для измерений вторым черенковским методом) с учетом ионизационных потерь энергии по тракту до месторасположения черенковских приборов (точнее, до входа в радиатор).

Сопоставление результатов измерений этими методами иллюстрируется рис. 9, из которого следует, что измерения хорошо согласуются между собой.

В связи с этим возникает возможность проверки соотношения сос $\Theta = 1/n\beta$, так как черенковские методики позволяют измерить угол $\Theta_{ch}^{\text{эксп.}}$ испускания ИВЧ в радиаторе с известным показателем преломления, а методика, условно названная нами " $\Delta E \over \Delta x$ ", дает энергию ядер E_{Au} (а следовательно, и β), что позволяет рассчитать черенковский угол $\Theta_{ch}^{\text{расч.}}$.

В табл. 4 приведены расчетные данные по углу ИВЧ $\Theta_{ch}^{\text{расч.}}$ по β , измеренному методикой " $\frac{\Delta E}{\Delta x}$ ", совместно с углами $\Theta_{ch}^{\text{эксп.}}$, измеренными экспериментально с помощью черенковских приборов.

Таблица 4

	Θ_{Ch}^{calc}	Θ_{Ch}^{exp}	Примечание
1	38°27'17"	38°30'9"	Методика
2	38°06′12″	38°05'10″	"комби"
3	37°42′57″	37°41′34″	
4	26°55′	27°00′	Методика (E, α)

Авторы благодарят за помощь в осуществлении эксперимента профессора П.Кинли (ГСИ), профессора Ц.Д.Вылова (ОИЯИ), а также В.И. Сидорову, В.Г.Сазонова, Н.Н. Лебедева, Г.В.Горбунову, А.Брунле, Г.Отто и Р.Яника за техническую помощь при проектировании, изготовлении и эксплуатации установки.

8

Литература

- [1] Mather R.L.- Phys.Rev., v.84 (1951), p.181.
- [2] Zrelov V.P. et al.- NIM, v.103 (1972), p.261.
- [3] Zrelov V.P. et al.- NIM, v.105 (1972), p.109.
- [4] Zrelov V.P. et al.- NIM, v.107 (1973), p.279.
- [5] Zrelov V.P.- NIM, v.115 (1974), p.457.
- [6] Zrelov V.P. et al.- NIM, v.136 (1976), p.285.
- [7] Zrelov V.P. et al.- NIM, v.134 (1976), p.437.
- [8] Zrelov V.P.- NIM, v.166 (1979), p.207.
- [9] Hubele J. et al.- Preprint GSI-92-17, 1992.
- [10] Кузьмин Е.С., Тарасов А.В.- "Краткие сообщения ОИЯИ", 4(61), 1993.
- [11] Budyashova S.Yu. et al.- NIM in Phys.Res., A277 (1989), 304-312.
- [12] Зрелов В.П. и др.- ПТЭ, 1 (1990), стр.72.
- [13] Burov A.S. et al.- Oxford Conference on Computer Scanning, England, v.1., (1974), p.111.

Рукопись поступила в издательский отдел 28 декабря 1994 года.

P13-94-515

P13-94-515

Исследование возможностей применения черенковской методики для измерения средней энергии пучков релятивистских ядер ¹⁹⁷Au в области энергий 0,64+0,99 ГэВ/а.е.м.

В работе исследовалась возможность применения черенковской методики для измерения средней энергии коллимированных пучков релятивистских ядер $^{197}_{79}$ Аu, поскольку такие пучки при их специфическом взаимодействии с радиатором (сильное торможение, фрагментация) оказывают значительное влияние на размытие черенковского конуса. Для этих целей использовались два черенковских метода: 1 — ахроматический (E, α); 2 — комбинированный («комби»). При энергии ~1 ГэВ/а.е.м. точность измерений методом «комби» составила ±1,4 МэВ/а.е.м., а метод (E, α) при энергии $E_{Au} \approx 640$ МэВ/а.е.м. дал точность ±0,9 МэВ/а.е.м.

Эти результаты оказались в хорошем согласии с исходными данными по E_{Au} ускорителя SIS с учетом потерь энергии по тракту (максимальное расхождение $\leq 0,4\%$). На основе совокупности, этих данных проверено условие направленности для ИВЧ от тяжелых ядер. Показано, что оно выполняется с точностью не хуже $\pm 5'$ в области углов 27° $\leq \Theta_{ab} < 38,5^\circ$.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна, 1994

Перевод авторов

Ружичка Я. и лр.

Ruzicka J. et al.

Investigation of Possible Applications of Cherenkov Technique to Measure Average Energy of Beams of Relativistic ¹⁹⁷/₂Au Nuclei in Energy Range 0.64+0.99 GeV/a.m.u.

A possibility of using the Cherenkov technique to measure the average energy of collimated relativistic nuclear Au beams is investigated in the paper for specific beam-radiator interaction (strong deceleration, fragmentation) produces a considerable effect of the spreading of the Cherenkov cone. Two Cherenkov methods — achromatic (E, α) and combinied («combi») — were employed for this purpose. At an energy of about 1 GeV/a.m.u. the accuracy of measurement by the «combi» method was ± 1.4 MeV/a.m.u. The accuracy of measurement by the (E, α) method was ± 0.9 MeV/a.m.u. at the energy $E_{Au} \approx 640$ MeV/a.m.u.

These results turned out to be in good agreement with initial E_{Au} data from the SIS accelerator with allowances made for energy losses over the beam line (the maximum discrepancy was $\leq 0.4\%$. With all the set of these data, the directivity condition was checked for VChR from heavy nuclei. It is shown to be fulfilled to an accuracy above $\pm 5'$ in the angle range $27^\circ < \Theta_{ch} < 38.5^\circ$.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna, 1994 -