СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

Экз чит. ЗАЛА

Ю.В.Таран

9275

11 11 11

ПЯТИСЛОЙНЫЙ ФЕРРОМАГНИТНЫЙ ЭКРАН ОБЪЕМОМ 1,5 М³

II. Магнитные измерения феррозондовым магнитометром

P13 - 9275

P13 - 9275

Ю.В.Таран

ПЯТИСЛОЙНЫЙ ФЕРРОМАГНИТНЫЙ ЭКРАН ОБЪЕМОМ 1,5 М³

II. Магнитные измерения феррозондовым магнитометром

Summary

The topography of the residual magnetic field in a five-layer permalloy cylindrical screen (the internal volume being about $1.5m^3$) has been measured with the aid of the fluxgate magnetometer (the response being about $2 \cdot 10^{-6}$ Oe). The results of these measurements are presented. In the volume of 45x45x15 cm³ (along the screen axis) the meansquare homogenity of the transverse and longitudinal components of the residual field was obtained to be $3.4 \cdot 10^{-5}$ Oe and $2.8 \cdot 10^{-5}$ Oe, respectively, which satisfies the requirements to the screen as a magnetic shielding for the installation "Tristom" used for the neutron electric dipole moment measurements by ultracold neutrons.

Введение

В работе $^{/1/}$ /далее обозначается как часть 1/ была описана конструкция пятислойного цилиндрического пермаллоевого экрана с внутренним объемом около 1,5 M^3 , сооруженного в ЛНФ ОИЯИ для защиты установки "Тристом" от геомагнитного поля и помех низкой частоты. В этой установке, предназначенной для измерения электрического дипольного момента /ЭДМ/ нейтрона с помощью ультрахолодных нейтронов /УХН/, предъявляются достаточно высокие требования к однородности магнитного поля.

Используя результаты работ $^{/2,3/}$, сформулируем требования на однородность магнитного поля в установке и, тем самым, на» однородность остаточного магнитного поля в экране, исходя из следующих соображений: 1/ деполяризация УХН во время их выдержки в накопительной камере должна быть достаточно мала, чтобы сильно не ухудшилась чувствительность установки, характеризуемая ошибкой в измерении ЭДМ нейтрона ΔD , которая обратно пропорциональна поляризации УХН f_n; 2/ эффективное уширение резонансной линии должно быть достаточно мало, чтобы чувствительность установки также сильно не ухудшилась.

1. Согласно расчетам Лущикова /1969 г./, Ефимова и Игнатовича /1974 г./^{/3/}, изменение поляризации УХН во времени и описывается следующим выражением:

/1/

3

 $f_n \stackrel{\approx}{=} 1 - \frac{1}{2} \delta_{\perp}^2 \frac{vt}{\rho} ,$

где v - скорость УХН, l - корреляционная длина*,

 $\delta_1^2 = \delta_x^2 + \delta_y^2$, $\delta_{x(y)}^2 = \sigma_{x(y)}^2 / (\overline{H})^2$, $\sigma_{x(y)}^2 = H_{x(y)}^2 - (H_{x(y)})^2$,

 $H_{x(y)}$ - величина поперечной x(y) -компоненты магнитного поля в установке **. Черта над символом означает усреднение по объему накопительной камеры. Используя типичные значения $v = 5 \cdot 10^2 \ cm \ c^{-1}$, $t = 50 \ c \ u \ \ell = 10 \ cm$, получим требование на относительную неоднородность поперечных компонент магнитного поля $\delta \perp \le 3 \cdot 10^{-2} \ \sqrt{\Delta f_n}$, что, скажем, для $\Delta f_n = 0,1$ и величины магнитного поля $H = 1500 \ \gamma$, предусмотренной в установке "Тристом", дает условие на абсолютную среднеквадратичную неоднородность $\sigma_{\perp} \le < 15\gamma$.

2. Согласно работам^{/2, 3/}, ошибка в определении ЭДМ нейтрона равна:

 $\Delta D \stackrel{\approx}{=} \Delta D_0 (1 + \frac{1}{2} \overline{\Phi^2}) , \qquad /2/$

где ΔD₀ - ошибка с однородным полем, (Φ²)^{1/2} - среднеквадратичный угол дополнительной прецессии УХН, обусловленный неоднородностью магнитного поля^{***}:

*Под корреляционной длиной понимается средний размер областей неоднородностей поля. В установке "Тристом" она может быть отождествлена со средней длиной свободного пробега УХН между столкновениями со стенками камеры, так как магнитное поле, создаваемое соленоидом, является гладкой функцией координат.

** Соленоид, предназначенный для создания рабочего поля в установке "Тристом", расположен соосно внутри магнитного экрана, так что продольная компонента $H_z \gg H_x$, H_y .

*** Для Φ^2 взято выражение из работы^{/2/}. В работе^{/3/} численный множитель в Φ^2 найден равным 2-1^{/2}, т.е. требования на однородность поля менее жесткие. Однако в работе^{/2/} с помощью численного моделирования эксперимента было показано, что уравнение /3/ справедливо с точностью не хуже 15%.

$$\frac{1}{2} = 2\gamma_n^2 \sigma_z^2 \frac{\ell t}{v},$$

где, в свою очередь, γ_n - гиромагнитное отношение нейтрона, σ_z^2 - дисперсия z -компоненты.

Обозначая ухудшение чувствительности эксперимента $\Delta D / \Delta D_0$ через m, получим для использованных ранее значений v,t и ℓ требование на абсолютную среднеквадратичную иеоднородность продольной /основной/ компоненты магнитного поля $\sigma_z \leq 5.5 \sqrt{m-1}$, что для вполне допустимого ухудшения чувствительности эксперимента на 30% (m = 1,3) дает $\sigma_z \leq 3y$.

В настоящей работе описывается процедура магнитных измерений остаточного поля внутри экрана с помощью феррозондового магнитометра и полученные результаты.

Аппаратура

Для измерений использовался промышленный трехкомпонентный феррозондовый магнитометр СКГ-58 М. Феррозонд был установлен на платформе механизма перемещения и ориентации / рис. 1/, расположенной в плоскости, перпендикулярной оси экрана, и имевшей четыре степени свободы:

1/ вдоль осн z, параллельной осн экрана, 2/ по раднусу R в плоскости, перпендикулярной оси экрана, 3/ по азимутальному углу ϕ , и 4/ по углу вращения *а* вокруг оси, перпендикулярной платформе и проходящей через ее центр. Центру экрана соответствовали координаты z=R=0. Перемещение феррозонда по первым трем степеням позволяло устанавливать его в любую точку объема пространства, равного объему накопительной камеры установки "Тристом"*.

*Камера представляет собой цилиндр диаметром О,5 м и длиной 10-15 см, ось которого совпадает с осью экрана.

4

-5

/3/

оимохходш платформа Ħ ратетра ŝ Ф. Ф.3 õ канизм 50X. Й

В выбранной для измерения точке датчики феррозонда, используемые для измерения компонент H_x и H_y /сокращенно: ФЗХ и ФЗУ/, могли быть повернуты на угол *а* в пределах от О до 360°, что позволяло систематически контролировать "нуль" магнитометра^{*}. При этом датчик для измерения компоненты H_z /ФЗ Z / своей ориентации в пространстве не изменял.

Выход электронного блока феррозонда был подключен к потенциометру постоянного тока типа ППТВ с зеркальным гальванометром; цена деления последнего составляла O,O15 *мВ*. Для контроля чувствительности аппаратуры каждый датчик имел калибровочную обмотку с постоянной 6,39 γ /*мкА*. В пределах от О до 100 *мкА* выходная характеристика магнитометра внутри экрана была найдена линейной с производной: 1/ для ФЗХ и ФЗҮ - O,403 *мВ/мкА*, и 2/ для ФЗZ - O,413 *мВ/мкА*, что дает для их чувствительностей 15,8 γ /*мВ* и 15,6 γ /*мВ*, соответственно ^{**} При этом цена деления гальванометра соответствовала \approx O,25 γ . Стабильность "нуля" датчиков в течение дня измерений лежала в этих пределах.

Результаты измерений

В программу магнитных измерений с феррозондовым магнитометром были включены следующие задачи: 1/изучение влияния расположения блока крышек экрана относительно его цилиндрической части на остаточное поле в центре; 2/ исследование долговременной стабильности остаточного поля; 3/ восстановление топографии остаточного поля в объеме накопительной камеры; 4/изучение

* Феррозондовый магнитометр в отсутствие магнитного поля имеет на выходе конечный сигнал / "нуль" прибора/, стабильность и величина которого определяются точностью изготовления датчика и балансировки электронной схемы. При повороте датчика на 180° относительно перпендикулярной оси, проходящей через его середииу, составляющая сигнала, обусловленная магнитным полем, меняет знак, что позволяет определить "нуль" прибора.

** Паспортная чувствительность 16,7 у/ мВ.

влияния ориентации экрана на величину z - компоненты поля на оси экрана.

1. В исследованиях на модели экрана в 1/4 натуральной величины /4/ было отмечено, что в центре его можно было получить несколько меньшее остаточное поле /3 -- $3,5_{\gamma}$ вместо 5 - $5,5_{\gamma}$ /, если первый /самый внутренний/ слой не имел крышек. Для исследования этого эффекта, а также для определения оптимального положения /"нахлеста"/ крышек относительно обечаек были проведены измерения зависимости остаточного поля в центре экрана от величины Δ_{z} , связанной с величиной нахлеста / рис. 2/.

Было найдено, что к положению крышек более чувствительна поперечиая компонента H_{\perp} остаточного поля, чем продольная. Хотя в отдельных случаях результаты получались хорошими /см., например, *рис.* 3/, никакой повторяемости в ходе зависимости $H_{\perp}(\Delta_z)$ не наблюдалось. Статистически было установлено, что при $\Delta z < 4$ см воспроизводство достаточно низкого значения H_{\perp} было наихудшим, поэтому для дальнейших измерений было сделано $\Delta_z = 4$ см. При отсутствии нахлеста результаты не выходили за рамки обычных.

2. В части 1 сообщались предварительные результаты измерения стабильности остаточного поля в центре экрана в течение месяца. Наличие механизма перемещения и ориентации позволило контролировать долговременную стабильность поля по выделенному объему внутри экрана. Так как измерение полной топографии в таком объеме представляет очень трудоемкую работу, то оно осуществлялось лишь эпизодически, а периодическому контролю подвергалась только зависимость H₁ (z) при R =O, которая снималась достаточно быстро. Было установлено, что в течение примерно одного месяца после размагничивания идет деформация топографии остаточного поля с увеличением его среднего значения и ухудшением однородности. Затем наступает относительная стабилизация остаточного поля. Динамика процесса старения иллюстрируется кривыми H₁ (z) на рис.4, снимавшимися в течение двух месяцев.

3. По истечении двух месяцев после размагничивания было проведено полное восстановление топографии оста-

8

Рис. 2. Стыковка крышки и обечайки магнитного экрана: 1 - обечайка, 2 - крышка, Размеры в мм.

Рис. 4. Зависимость Н₁ (у) от z/см/ на оси экрана /R =O/: 1 - через 1 час после размагничивания, 2 - через 3 суток, 3 - через 1 неделю, 4 - через 1,5 месяца, 5 через 2 месяца. Центру экрана соответствует z =O.

точного поля в объеме с размерами $\Delta x \cdot \Delta y \cdot \Delta z =$ = 45 x 45 x 15 см³, равного объему накопительной камеры установки "Тристом". На *рис.* 5 с иллюстративной целью показана топография поперечной компоненты H_{\perp} в плоскости z = 0. В верхней половине плоскости поле сильно деформировано локальной неоднородностью в намагниченности первого слоя экрана^{*}. В нижней половине H_{\perp} значительно более однородно. Качественно характер топографии поля в поперечных сечениях экрана при z в пределах от - 10 до 10 см сохраняется.

Для нахождения нужных нам дисперсий поперечной и продольной компонент остаточного поля σ_{\perp}^2 и σ_z^2 были получены достаточно большие массивы значений H_{\perp} и H_z . Так как дисперсия поперечной компоненты равна

* Многократные попытки с помощью циркулярного размагничивания илиминировать эту неоднородность оказались безуспешными. $\sigma_{I}^{2} = \sigma_{x}^{2} \pm \sigma_{y}^{2}$, то из измеренных значений модуля вектора H_{\perp} и его направления /угол *a* / находились компоненты $H_{x} = H_{\perp} \cos(a+\phi)$ и $H_{y} = H_{\perp} \sin(a+\phi)$, <u>из</u> массива значений которых и определялись $\overline{H_{x(y)}}$ и $\overline{H_{x(y)}^{2}}$. В измерениях продольной компоненты H_{z} из-за отсутствия возможности периодически поворачивать ФЗ Z на 180°, находился полный сигнал $H'_{z} = H_{z} + H_{z}^{\circ}$, где H_{z}° - "нуль" магнитометра, что не помешало определению дисперсии *z*компоненты, так как $\sigma^{2}(H'_{z}) = \sigma^{2}(H_{z}) \equiv \sigma_{z}^{2}$.

Результаты измерений по указанному объему оказались следующими $\overline{H}_x = 2,3\gamma$, , $\sigma_x = 2,6\gamma$; ; $\overline{H}_y = 1,2\gamma$, $\sigma_y = 2,3\gamma$; ; $\sigma_\perp = 3,4\gamma$ и $\sigma_z = 2,8\gamma$, , <u>что л</u>ает неоднородность остаточного поля $\sigma = \sqrt{\sum_i \sigma_i^2} = 4,4\gamma$. Любопытно, что, хотя ход среднего значения поперечной компоненты \overline{H}_{\perp} , найденной в плоскости z = const, в зависимости от z в пределах от -10 до 10 см качественно повторяет ход $H_{\perp}(z)$ при R=O на рис. 4, величина σ_{\perp} от z практически не зависит. Аналогично, σ_z для тех же плоскостей флюктуирует не более, чем на 25%.

4. Для определения коэффициента экранирования $\kappa ||$ горизонтальной компоненты $H_{\Gamma O D}$. геомагнитного поля $H_{\Gamma C O}$. крышками экрана и отсюда точности установки экрана относительно вектора $\vec{H}_{\Gamma C O}$ была измерена зависимость показаний $\Phi 3Z$ от угла β между осью экрана и линией, перпендикулярной $\vec{H}_{\Gamma C O}$ и лежащей в горизонтальной плоскости.*.

носит линейный характер и наклон ее равен

= 1,64 у/град /рис. 6/. Пользуясь значениями $H_{\Gamma \oplus O}$ = = 45000 у и угла склонения вектора $\vec{H}_{\Gamma \oplus O}$. $\theta = 60^{\circ}$, получим для $k_{||} = (H_{\Gamma \oplus O} \cdot \cos\theta \cdot \sin\beta)/\beta (\Delta H / \Delta \beta) = 240$. На модели/4/ было получено $k_{||} = 450$, но, во-первых, у нее было 5 крышек на каждом торце вместо 4 на данном экра-

*Эта линия была найдена в предварительных измерениях в отсутствие экрана.

Рис. 5. Топография поперечной компоненты Π_1 остаточного поля в магнитном экране в плоскости z = O. Азимутальный угол ϕ отсчитывается от вертикали против часовой стрелки. Радиус R в см. Длина стрелки в 1 см соответствует величине Π_{\perp} в 2γ .

не /см. часть 1/, во-вторых, она была изготовлена из пермаллоя марки 80 НХС, имевшего $\mu_0 = 52000^*$, а для

* Значение μ_0 было экспериментально определено в процессе последовательной сборки модели из размагниченных обечаек. Такой возможности при сборке описываемого экрана не имелось.

Рис. 6. Показания гальванометра Γ (дел.) в зависимости от длины дуги ℓ /см/ радиуса г =174,2 см с началом точки отсчета от линии, перпендикулярной $\vec{H}_{\Gamma e0}$; 1 см по ℓ соответствует 0,33° по β .

данного экрана не ожидается μ_0 больше 48000; в-третьих, в торцах данного экрана имеются дополнительные отверстия для ввода различных коммуникаций в установку "Тристом"; в-четвертых, зазор между крышками модели был равен 8,5 мм, в то время как по принципу магнитного подобия с данным экраном модель должна была бы иметь его равным 6,25 мм. Двухкратное отличие в $\kappa_{||}$ с учетом того, что в экране зазор между обечайками по сравнению с его моделью увеличен в 2 раза, дает косвенное указание на то, что для данного экрана коэффициент экранирования κ_{\perp} поперек его оси равен неменее 10^5 , что совпадает с оценкой в части 1. Прямое измерение κ_{\perp} будет описано в части III.

Из величины $\kappa_{||}$ и условия $H_z < l\gamma$ получим требование на точность установки экрана относительно вектора $H_{reo.}$: $\beta \leq 0.6^{\circ}$.

Заключение

Сравнивая полученные результаты по однородности остаточного поля в экране с требованиями для установки "Тристом", отметим, что: 1/ однородность поперечных компонент значительно лучше требуемой; 2/ однородность продольной компоненты находится в пределах, допускаемых 25-процентным ухудшением чувствительности установки, что может быть компенсировано 50-процентным увеличением статистической обеспеченности эксперимента.

Долговременная стабильность остаточного поля достаточна для устойчивой работы быстрой схемы стабилилизации с динамическим диапазоном не более lv без периодического размагничивания экрана.

Автор пользуется случаем поблагодарить Ю.В.Никитенко, В.Б.Дучица и А.И.Сальникову за помощь в работе.

Литература

- 1. Н.А.Алексеев, Б.И.Воронов, В.И.Константинов, Ю.В.Таран. Сообщение ОИЯИ, P13-9221, Дубна, 1975.
- 2. Ю.В. Таран. Сообщение ОИЯИ, РЗ-7149, Дубна, 1973. 3. В.Н.Ефимов, В.К.Игнатович. Сообщение ОИЯИ,
- Р4-8253, Дубна, 1974.
- 4. Ю.В. Таран. Сообщение ОИЯИ, РЗ-7377, Дубна, 1973.

Рукопись поступила в издательский отдел 3 ноября 1975 года.