90-218



ОбЪЕДИНЕННЫЙ Институт ядерных Исследований

дубна

A-721.

P13-90-218

1990

Ю.М.Антипов\*, Ю.П.Горин \*, Ю.А.Горнушкин, Р.Лейтнер, Г.В.Мицельмахер, А.А.Ноздрин, А.Г.Ольшевский, А.И.Петрухин\*

# РАЗДЕЛЕНИЕ АДРОНОВ И ЭЛЕКТРОНОВ В КОМБИНИРОВАННОМ КАЛОРИМЕТРЕ

Направлено в журнал "Приборы и техника эксперимента"

\*Институт физики высоких энергий, Серпухов

# Введение

Электромагнитные и адронные калориметры, MNDOKO применяемые в экспериментальных установках для исследований в области физики высоких энергий, обеспечивают не только координат частиц, энергии и HO также измерение И идентификацию класса частиц, которую трудно осуществить С помощью других методов. Одной из важных залач является адронов и электронов (фотонов). разлеление KOTODOB основывается, как правило, на пространственных различиях в адронного И электромагнитного ливней. профилях. особенно существенных для веществ-поглотителей калориметра с сильно различающимися радиационной и ядерной длинами, т.е. лля веществ с большим зарядом ядра<sup>/1,2,3/</sup>.

Принципиальное физическое ограничение на использование этого метода разделения накладывает зарядово-обменная реакция  $\pi^- p \rightarrow \pi^o n$  (или  $\pi^+ n \rightarrow \pi^o p$ ), приводящая к имитации электромагнитного ливня. Для пионов с энергией несколько ГэВ сечение этой реакции составляет  $\approx 1\%$  от полного неупругого сечения и логарифмически уменьшается с увеличением энергии. Типичные величины  $e/\pi$  разделения составляют  $\approx 10^{-3}$  в диапазоне энергий от единиц до нескольких десятков ГэВ<sup>/2/</sup>.

В настоящей работе изучена возможность разделения адронов и электронов (фотонов) при помощи комбинированного годоскопического детектора, состоящего ИЗ адронного (Ге-сцинтиллятор) калориметра типа сэндвича И калориметра на основе СЧӨТЧИКОВ ИЗ электромагнитного свинцового стекла и Рb-конвертора.

# Экспериментальная установка

Схема комбинированного детектора приведена на рис. I. Годоскопический Fe-сцинтилляционный адронный калориметр<sup>/4/</sup>

Иоъсканенный институт одерных исследованой БИБЛИОТЕНА



Рис. І. Схема комбинированного детектора: АК счетчики адронного калориметра: ЭМК - счетчики электроматнитного калориметра: Рь - свинцовый конвертор.



Рис.2. Спектры энерговыделения в электромагнитном (ЭМ), адронном (А) и комбинированном (ЭМ+А) калориметрах для варианта без конвертора. По оси абсиисс отложена величина Е./Е, где Е. - энерговыделение В СООТВЕТСТВУКЩЕМ КАЛОРИМЕТРЕ, Е - ЭНЕРГИЯ НАЛЕТАищего электрона, измеренная магнитным спектрометром (≈25 ГэB).

2

представляет собой матрицу из I2×8 счетчиков (ячеек) полного поглощения с поперечными размерами 20×20 см (полная толщина -5 длин ядерного взаимодействия, апертура - 4 м<sup>2</sup>). Электромагнитный калориметр собран ИЗ черенковских счетчиков /5/ с радиаторами из свинцового стекла Ф8 "00" размерами IO×IO×42 см, которые укладывались длинной гранью поперёк пучка (т.е. толщина радиатора в направлении пучка составляет IO см, ~ 4 радиационные длины, ≈ 0,2 ядерной длины). Счётчики собраны в матрицу 5×12 (по горизонтали и соответственно) с перекрытием 2 см по длине вертикали радиатора. Таким образом, апертура электромагнитного калориметра составляет 200×120 см, а размер ячейки 10×40 см. Измерения проводились как с конвертором из свинца толщиной 2 см ( ≈ 3,6 радиационных длин, ≈ 0,12 ядерной длины), так и без него. Подробности конструкции детекторов и регистрации информации описаны ранее /4,5/.

Измерения проводились на пучке электронов с энергией Е ≈ 25 ГэВ и π-мезонов с Е ≈ 43 ГэВ на ускорителе ИФВЭ (установка СИГМА-АЯКС/6/). Адронный и электромагнитный калориметры расположены на установке таким образом, что пучок попадает в области между рядами центральных счётчиков (рис.1). Импульсы частиц измерялись магнитным спектрометром. Область облучения (  $\approx$  I см<sup>2</sup> ) определялась телескопом сцинтилляционных счётчиков.

# Калибровка и характеристики комбинированного калориметра

адронного/4/ и Предварительная калибровка счётчиков электромагнитного калориметров была проведена на пучках мюонов, пионов и электронов. При обработке информации, облучении комбинированного калориметра полученной при калибровочные коэффициенты уточнялись путём электронами, минимизации суммарного по событиям выражения:

 $\Sigma [E - (\kappa_{\text{BM}} \cdot A_{\text{BM}} + \kappa_{\text{A}} \cdot A_{\text{A}})]^2,$ 

3

энергия электронов, измеренная где Ε

магнитным



Рис.З. То же, что и на рис.2, для варианта с конвертором.



Рис.4. Распределения величины относительного энерговыделения в электромагнитном калориметре  $\alpha = = E_{\rm 2M}/(E_{\rm 2M}+E_{\rm A})$ : распределение  $\pi$  – для  $\pi$  –мезонов ( $E \approx 43$  ГэВ), е – для электронов ( $E \approx 25$  ГэВ) в варианте без конвертора, е<sub>к</sub> – для электронов в варианте с конвертором. спектрометром; A<sub>ЭМ</sub> и A<sub>A</sub> – амплитуды сигналов в счётчиках электромагнитного и адронного калориметров; к<sub>ЭМ</sub> и к<sub>A</sub> – соответствующие калибровочные коэффициенты.

На рис.2 приведены энерговыделения спектры электромагнитном и адронном калориметрах и спектр суммарного энерговыделения. На рис.З' приведены аналогичные спектры, но для варианта с установленным Pb-конвертором (рис.I). Из рисунков видно, что для варианта без конвертора в электромагнитном калориметре выделяется ≈ 1/4 полной энергии а при использовании конвертора электрона, ≈ 3/4. Энергетическое разрешение комбинированного калориметра для электронов (см. спектры (ЭМ+А) на рис.2 и З) с учетом разрешения магнитного спектрометра (≈ 4%) оказывается равным  $\sigma_{\rm T}^{\rm e}/{\rm E} \approx 6\%$ , то есть получилось практически таким же, как и в случае использования только адронного калориметра (при облучении пучком электронов центра ячейки). Напомним, что в настоящих измерениях пучок облучает области вблизи краев ячеек, поэтому при равномерном облучении комбинированного детектора в реальном эксперименте разрешение будет лучше.

Что касается энергетических, а также пространственных характеристик комбинированного детектора для  $\pi^-$ -мезонов (адронов), то они практически не изменяются по сравнению с вариантом использования только адронного калориметра<sup>/4/</sup>, поскольку вещество электромагнитного калориметра составляет  $\approx 0.3$  ядерной длины : 0.2 (счетчик) + 0.1 (Рb-конвертор).

Разделение электронов и адронов

На рис.4 приведены распределения величины относительного энерговыделения в электромагнитном калориметре  $\alpha = E_{3M} / (E_{3M} + E_A)$ (где  $E_{3M}$  и  $E_A$  – энерговыделение в электромагнитном и адронном калориметрах), соответствующие облучению комбинированного калориметра 43 ГэВ  $\pi$ -мезонами и 25 ГэВ электронами (для варианта с конвертором и без него). Эти распределения мало перекрываются и, вводя ограничение по величине  $\alpha$ , можно

.

Рис.5. Зависимость эффективности регистрации пионов ( $\mathcal{E}_{\mathcal{H}}$ ) и электронов ( $\mathcal{E}_{\Theta}$ ) от порога по  $\alpha$ :  $\mathcal{H}$  – зависимость для пионов,  $\Theta_{\rm K}$  и  $\Theta$  – для электронов для вариантов с конвертором и без него соответственно.



02 03 04 05 06

0.7 0.8 0.9

ε<sub>π</sub>, 1- ε<sub>e</sub>

:10

10-2

10-3

0 0.1

\_π





Рис.7. Зависимость эффективности регистрации электронов ( $\mathcal{E}_{\Theta}$ ) и пионов ( $\mathcal{E}_{\pi}$ ) от порога по D:  $\mathcal{T}$  – кривая для пионов,  $\Theta$  – для электронов,  $\Theta_{M}$  – для электронов в случае равномерного облучения площади ячейки (моделирование).

7

На рис.5 представлены электроны от пионов. отделять рис.4 зависимости полученные из спектров эффективности регистрации электронов и п-мезонов от порога по а. Из этих зависимостей видно, что для варианта без конвертора при эффективности регистрации электронов  $\varepsilon_0 = 0,95$  (критерий α > 0,12) подавление пионов составит ≈ 10<sup>-1</sup>. Для варианта с конвертором при  $\varepsilon_{\alpha} = 0,95$  (  $\alpha > 0,4$  ) пионы подавлены до ≈ 10<sup>-2</sup>. Введение для этого варианта обратного уровня критерия ( а < 0,2 ) позволяет получить подавление электронов до уровня ≈ 10<sup>-2</sup> при эффективности регистрации пионов ε<sub>π</sub> = 0,95. Таким образом, введение пассивного конвертора (толшиной ≈ 4 радиационные длины), приводящего к смещению максимума энерговыделения электромагнитного ливня на активную часть электромагнитного калориметра, позволяет на порядок улучшить эффективность разделения электронов и адронов.

Дальнейшее улучшение фактора с/п разделения может быть получено при привлечении информации о поперечных размерах ливня /3/, которые для адронных и электромагнитных ливней различаются на порядок величины. Эта информация была получена с помощью годоскопического адронного калориметра. В качестве меры ширины ливня в калориметре использована величина корня из дисперсии  $D = (\sqrt{D_x + D_y})/d$ , где d – ширина ячейки (20 см);  $D_{x} = \sum x_{i}^{2} A_{i} / \sum A_{i}$ ,  $x_{i}$  - расстояние от центра 1-й ячейки до координаты центра тяжести ливня, А. - амплитуда сигнала в ячейке. На рис.6 приведены распределения по ширине ливня D в полученные при облучении адронном калориметре, комбинированного детектора электронами ( Е ≈ 25 ГэВ ) и пионами ( E ≈ 43 ГэВ ). Введение ограничения по D позволяет отделять адроны от электронов. На рис.? приведены полученные из спектров рис.6 данные об эффективности регистрации электронов и пионов в зависимости от порога по D. По этим кривым видно, что при эффективности регистрации электронов ε<sub>ρ</sub> = 0,95 (критерий отбора D < 0,5) фактор подавления для шионов составляет ≈ 10<sup>-1</sup>. Введение обратного критерия ( D > 0,4 ) обеспечивает практически такое же подавление электронов при є .= 0,95.

Отметим, что распределение величины D для электронов сильно зависит от места попадания пучка в ячейку адронного калориметра (для адронов эта зависимость слабая из-за большой ширины адронного ливня). Как уже отмечалось, расположение калориметра на установке СИГМА-АЯКС таково, что пучок (сечением ≈ I см<sup>2</sup>) попадает в области рядами между моделирование проведено центральных ячеек. Поэтому было распределения D для случая равномерного облучения площади ячейки ( 20 × 20 см ) электронами. Соответствующая кривая эффективности представлена на рис.7, из которого видно, что в случае равномерного облучения приведённый выше фактор е/ж разделения не ухудшается.

При одновременном использовании двух критериев разделения электронов (E  $\approx$  25 ГэВ) и  $\pi^-$  мезонов (E  $\approx$  43 ГэВ) по относительному энерговыделению в электромагнитном калориметре и по поперечным размерам ливней, уровень разделения составляет  $\approx 10^{-3}$  при эффективности регистрации одной из частиц 0,9.

Для частиц с другими энергиями (в диапазоне ≈ 5÷50 ГэВ), для регистрации которых предназначен описанный детектор, уровень разделения будет примерно таким же, так как профили адронного и электромагнитного ливней, на различиях в которых основывается е/т разделение, слабо изменяются с энергией.

#### Заключение

Fe-сцинтилляционного годоскопического Дополнение адронного калориметра относительно простым электромагнитным калориметром, содержащим 60 счётчиков на основе свинцового 2,4 м<sup>2</sup>, позволило создать при полной апертуре стекла энергетические комбинированный детектор, сохраняющий И калориметра И адронного характеристики координатные ≈ 10-, при π/е разделение на уровне обеспечивающий эффективности регистрации одной из частиц 0,9. выражают благодарность коллективу всему Авторы

9

сотрудничества СИГМА-АЯНС за помощь в работе.

8

### ЛИТЕРАТУРА

I. Fabjan C.W. and Wigmans R.- Report CERN-EP/89-64, 1989.

2. Iwata S.- Report DPNU 3-79, Nagoya Univ., Japan, 1979.

3. Алди Д. и др.- Препринт ИФВЭ 88-1826, Серпухов, 1988; NIM, 1989, v.A276, p.652.

4. Антипов Ю.М. и др. – Препринт ОИЯИ РІЗ-89-830, Дубна, 1989. 5. Акопджанов Г.А. и др. – Препринт ИФВЭ 82-97, Серпухов, 1982. 6. Вишневский А.В. и др. – Соббщение ОИЯИ РІ-89-202, Дубна, 1989.

> Рукопись поступила в издательский отдел 27 марта 1990 года.