

ОбЪЕДИНЕННЫЙ Институт ядерных исследований дубна

B191

P13-89-85

Б.В.Васильев, В.Н.Полушкин

МАГНИТОМЕТР НА ОСНОВЕ ОДНОИНДУКТИВНОГО ВЫСОКОТЕМПЕРАТУРНОГО СКВИДА

Направлено в журнал "Приборы и техника эксперимента"

1989

введение

2

К концу 1988 г. были созданы высококачественные двухиндуктивные радиочастотные сквиды, работающие при температуре жидкого азота '1-5'. Такие сквиды являются, по существу, градиентометрами с малой базой, обычно меньше 5 мм. Следствием этого является их относительно слабая чувствительность к внешним магнитным полям, что позволяет в отсутствие высококачественных сверхпроводящих экранов провести исследование динамики этих сквидов, измерить их индуктивность и собственные шумы, оценить разрешение по энергии, которое может быть получено в перспективе в устройствах на основе таких сквидов. Разработка достаточно тонкой проволоки, обладающей сверхпроводимостью при температуре жидкого азота, из которой можно было бы изготовить сверхпроводящий трансформатор магнитного потока, да:т возможность создать, по-видимому, весь спектр приборов, использующих традиционные низкотемпературные сквиды.

Однако в отсутствие тонкой ВТСП-проволоки слабая чувствительность двухиндуктивных сквидов к внешним магнитным полям делает их непригодными для практического приборостроения. Тем не менее собственные джонсовские шумы,близкие по уровню к гелиевым сквидам при значительно большем удобстве работы с жидким азотом, чем с жидким гелием, побуждают исследователей искать решения по применению именно ВТСП-сквидов для проведения высокочувствительных измерений.

Одним из путей повышения чувствительности двухиндуктивных сквидов является введение разбаланса между отверстиями. Этого можно достигнуть, изготовив двухиндуктивный сквид, имеющий отверстия с разными диаметрами ^{/5/}, или введя водно из отверстий сверхпроводящий стержень ^{/6/}. Однако это не устраняет главный их недостаток - по их внешнему контуру, охватывающему оба отверстия, течет экранирующий ток, что заметно снижает чувствительность.

Этого недостатка лишен одноиндуктивный высокотемпературный сквид.Такой сквид был изготовлен нами из керамики $Y_1 Ba_2 Cu_3 O_{7-2}$ полученной с помощью стандартной процедуры твердотельного синтеза $^{7/}$. В дальнейшем отбиралась та керамика, у которой плотность критического тока $j_c > 150$ А/см².

В таблетке из такой керамики просверливалось отверстие диаметром порядка 1 мм, служащее контуром квантования для сквида.

Рис.1. Блок-схема магнитометра на основе одноиндуктивного высокотемпературного сквида. 1 – сквид, 2 – ВЧгенератор, 3 – колебательный контур L_tC_t , 4 – малошумящий предварительный усилитель высокой частоты, 5 – амплитудный детектор, 6 – блок низкой частоты, 7 – блок обратной связи.

Между отверстием и кромкой таблетки механически прорезалась щель, внутри которой оставался мостик, замыкающий контур квантования. Мостик обычно имел характерные размеры несколько микрометров и имел критический ток $I_c \approx 10$ мкА, так чтобы гистерезисный параметр сквида $\beta = 2\pi L_s I_c / \Phi_o$ был меньше /5÷10/. Здесь L_s - индуктивность контура квантования, Φ_o - квант магнитного потока.

Для того чтобы избежать попадания влаги на сквид, применялся герметичный защитный кожух. Для подавления внешних помех сквид вместе с сосудом Дьюара помещали в магнитный экран /из отожженного пермаллоя/, подавляющий земное магнитное поле и внешние магнитные помехи более чем в 100 раз.

На рис.1 представлена блок-схема магнитометра. Как обычно, накачка сквида 1 осуществлялась на высокой частоте / f_p =20 МГц/ ВЧ-генератором 2 и опрос производился при помощи индуктивно связанного с ним колебательного контура L_tC_t 3, настроенного приблизительно на резонансную частоту контура ω_p . При этом для получения максимального отклика коэффициент связи подбирается согласно соотношению $k^2Q \simeq \pi/2$.

Напряжение на контуре усиливается малошумящим радиочастотным усилителем 4 и детектируется амплитудным детектором 5.Продетектированный сигнал преобразуется блоком низкой частоты 6, осуществляющим потокозамкнутый режим магнитометра. Все указанные электронные блоки полностью идентичны электронным блокам для низкотемпературных сквидов.

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ МАГНИТОМЕТРА

Методика измерения технических характеристик сквида более подробно описана в ^{/2/}.

Индуктивность сквида может быть получена из равенства:

 $L_{s} = I_{o}^{2}C_{t}/\Phi_{o}^{2}(\omega_{p1}^{-2} - \omega_{p2}^{-2}),$

где I_o – значение тока через L_t , вызывающего изменение потока сквида на Φ_o ; C_t – емкость колебательного контура; ω_{p1} – резонансная частота колебательного контура, измеряемая при малом уровне накачки, при котором контакт сохраняет сверхпроводимость и диссипативные процессы в сквиде не наблюдаются; ω_{p2} – резонансная частота колебательного контура, измеряемая при большом уровне накачки, когда джозефсоновский контакт находится в несверхпроводящем состоянии.

Измерения показали, что при диаметре контура квантования

 $I_o \simeq /0,8 \pm 0,1/$ мкА $k \simeq /0,15 \pm 0,01/$ $C_t \simeq /220 \pm 10/$ пФ $f_{p1} = /17,7 \pm 0,1/$ МГц, $f_{o2} = /17,35 \pm 0,1/$ МГц,

и собственная индуктивность сквида $L_{s} = /3,78 \pm 0,1/\cdot 10^{-10}$ Гн.

Зависимость спектральной плотности шумов по магнитному потоку Φ_n представлена на рис.2. Вычисления показывают, что в области белого шума разрешение по энергии

 $\epsilon = \Phi_n^2/2L_s \approx 9 \cdot 10^{-28}$ Дж/Гц.

Важнейшим моментом калибровки магнитометра является измерение реальной чувствительности сквида по полю. Поскольку уровень окружающих шумов не удалось снизить ниже 6.10⁻¹¹ Тл, то радиопрозрачный пластиковый криостат со сквидом был помещен в кольца Гельмгольца, причем так, что сам сквид располагался в геометрическом центре колец. Диаметр колец составлял 50 см. Каждая катушка содержала 900 витков. Катушки были включены последовательно, так что протекающий в них ток 1 мА со-

Рис.2. Фурье-спектр шумов керамического радиочастотного сквида при температуре 78 К, использованного в магнитометре. По оси абсцисс – частота, Гц; по оси ординат – плотность шумов, Ф/Гц^{1/2}: кривая 1 соответствует сквиду в толстостенном /~1 см/ медном экране, 1000 кривая 2 соответствует сквиду без медного экрана. здавал в точке расположения сквида поле 3,2·10⁻¹⁰Тл. При помощи колец Гельмгольца мы определили период вольт-эрстедной характеристики по полю

Зная периодичность ВЭХ, легко получить оценку чувствительности сквида по полю:

$$\langle \mathbf{B}_{n} \rangle = \langle \Phi_{n} \rangle \mathbf{B}_{0} / \Phi_{0},$$

где $<\Phi_n>$ - спектральная плотность шумов сквида по магнитному потоку /см. рис.2/.

Видно, что в области белого шума чувствительность сквида по полю равна

 $< B_n > -3, 8 \cdot 10^{-10} \cdot 3 \cdot 10^{-4} \simeq 1, 14 \cdot 10^{-13} \text{ Tm/Fu}^{1/2}$.

Такой чувствительности вполне достаточно для большого числа применений, например, в геофизике, медицине для снятия магнитокардиограммы, в других физических экспериментах.

Отметим, что для сквида с диаметром квантования, примерно равным 1 мм, измеренная индуктивность $L_s = 3,8 \cdot 10^{-10}$ Гн оказывается близкой к предельному значению индуктивности при T=78 К. Грубая оценка величины предельной индуктивности L_{max} получается, если приравнять энергию кольца с током и тепловую энергию. При этом для T = 78 К $L_{max} = 10^{-10}$ Гн. Более строгий учет влияния шумов определяет граничное значение индуктивности соотношением ^{/8/}:

$$L_{\max} = \Phi_{o}^{2} (\pi\beta)^{-1/2} (2k_{b}T)^{-1}$$

что при $\beta = 1$ и T = 78 К дает L_{max} $\approx 10^{-9}$ Гн.

Эти оценки, в общем, можно считать согласующимися с полученными экспериментальными результатами, учитывая, что для сквида с диаметром контура квантования около 1,6 мм обнаруживается заметное увеличение шумов, а сквиды с большими диаметрами отверстий оказываются неработоспособными.

ЗАКЛЮЧЕНИЕ

В заключение необходимо отметить, что в печати нередко появляются работы, посвященные альтернативным сквидам.

В отличие от нормальных сквидов в альтернативных перемычка не выступает в качестве перехода Джозефсона. В них на нескольких зернах случайным образом формируются паразитные контуры с индуктивностью <10⁻¹¹ Гн, а просверленные отверстия выступа-

5

как в пленочном, так и в керамическом варианте не что иное, как разновидность известных балк-сквидов. Исследования показывают, что в них отсутствует строгая периодичность по магнитному потоку. При воздействии на них внешнего магнитного поля случайные контуры в перемычке могут исчезать, изменять свои размеры. Кроме того, даже лучшие из таких сквидов имеют очень малую связь контура квантования с внешним полем и, как следствие, чувствительность по полю для них по крайней мере на 2-3 порядка хуже традиционных сквидов, работающих при T = 78 К. Поэтому альтернативные сквиды с концентраторами поля не представляют интереса для использования в качестве датчиков магнитного поля в практическом приборостроении.

ЛИТЕРАТУРА

- Bobrakov V.F. et al. In: JINR Rapid Commun., No.4[30]-88, Dubna: JINR, 1988, p.101.
- Полушкин В.Н., Васильев Б.В. В сб.: Краткие сообщения ОИЯИ, № 1[34]-89. Дубна: ОИЯИ, 1989, с.100.
- Шнырков В.И. и др. Физика низких температур, 1988, т.14,
 № 7, с.9.
- Harrop S.P. et al. Supercond. Sci. Technol., 1988, 1, p.68.
- Карцовник В.В. и др. В сб.: Всесоюзное совещание по ВТСП, Харьков, ФТИНТ АН УССР, 1988, т.3, с.51.
- 6. Шнырков В.И. и др. В сб.: Всесоюзное совещание по ВТСП, Харьков, ФТИНТ АН УССР, 1988, т.3, с.9.
- 7. Васильев Б.В., Лущиков В.И. В сб.: Краткие сообщения ОИЯИ, № 2[28]-88, Дубна, 1988, с.33.
- 8. Лихарев К.К. Введение в динамику джозефсоновских контактов. М.: Наука, 1985.

Рукопись поступила в издательский отдел 13 февраля 1989 года.