ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

B-191

Б.В.Васильев, В.В.Данилов, К.К.Лихарев

11 11 11 Basses

822/2-75

О ФОРМЕ СИГНАЛА СВЕРХПРОВОДЯЩЕГО КВАНТОВОГО ИНТЕРФЕРОМЕТРА В ГИСТЕРЕЗИСНОМ РЕЖИМЕ

4/4111-75

P13 - 8790

P13 - 8790

Б.В.Васильев, В.В.Данилов, К.К.Лихарев

.

О ФОРМЕ СИГНАЛА СВЕРХПРОВОДЯЩЕГО КВАНТОВОГО ИНТЕРФЕРОМЕТРА В ГИСТЕРЕЗИСНОМ РЕЖИМЕ

HOTERA

ię,

Направлено в ЖТФ

1. Введение

Сверхпроводящие квантовые интерферометры, в которых чувствительными элементами служат сверхпроводящие квантовые интерферометрические датчики – СКВИДы – $^{1,2/}$, используются в основном в гистерезисном режиме. Этот режим реализуется, когда основной параметр СКВИДа $\ell = 2\pi \frac{LRI0}{\Phi_0}$ больше единицы. Здесь $\Phi_0 = h/2e \simeq 2.10^{-15}$ В δ – квант магнитного потока: Lp. Lo – индуктивность и критический ток СКВИДа

тока; L_R , l_0 - индуктивность и критический ток СКВИДа. При обычных условиях работы /2-4/ зависимость амплитуды колебаний напряжения на контуре V(t) = = $A\cos(\omega t + \theta)$ от внешнего магнитного потока Φ (при фиксированном уровне накачки) имеет треугольную (или трапециевидную) форму /1-5/

Однако оказывается /5/, что в области больших отрицательных расстроек ξ_0 сигнал $A(\Phi_e)$, в отличие от обычной треугольной формы (рис.16), может иметь форму "прямоугольников" (рис.1в). Здесь $\xi_0 = \frac{\omega - \omega k}{\omega}$

- расстройка частоты накачки ω от собственной частоты контура ω_к.

Целью настоящей работы является анализ зависимости формы сигнала интерферометра $A(\Phi_e)$ от величины и знака расстройки ξ_0 . При этом в рамках общей теории интерферометра $^{/5/}$, применимой при любых ℓ и ξ_0 , рассчитываются условия перехода от треугольной формы сигнала к прямоугольной при больших значениях параметра ℓ .

3

Рис.1. Форма сигнала интерферометра $A(\Phi_e)$ в экспериментах с положительной расстройкой ξ_0 (б) и большой отрицательной расстройкой (в) при пилообразоном изменении потока смещения Φ_e (а).

2. Основные уравнения работы интерферометра

Важным элементом квантового интерферометра с одноконтактным СКВИДом является индуктивно связанный с датчиком колебательный контур/1-5/Путем совместного решения уравнений, описывающих колебания в контуре V(t) и ток $I_R(t,V)$ в СКВИДе, можно проанализировать работу интерферометра при любых эначениях параметров (например, ℓ и ξ_0). Заметим, что экспериментально обычно /2,3,5/используются интерферометры с добротностью колебательного контура Q>>1 и коэф-фициентом связи СКВИДа с контуром k<1*. Использование этих условий (Q>>1, k²<<1) позволяет при решении системы уравнений, определяющих работу интерферометра, ограничиться учетом только первых членов фурьеразложения величин V(t) и $I_R(t)$ (приближение гармонического баланса). В этом случае алгебраическое уравнение, определяющее амплитуду колебаний в контуре, имеет в безразмерных обозначениях следующий вид:

$$\left(\epsilon/2\right)^{2} = \left(\delta \cdot a\right)^{2} + \left(\xi \cdot a\right)^{2} . \tag{1}$$

Здесь $a = 2\pi k (L_R/L_k)^2 (\omega \cdot \Phi_0)^{-1} A$ – приведенная величина амплитуды колебаний напряжения на контуре, L_k – индуктивность контура, ϵ – приведенная величина амплитуды колебаний источника накачки, δ – величина эффективного затухания колебаний в контуре, ξ – величина эффективной расстройки.

$$\delta = \delta_0 - \frac{k^2 \ell}{2} - \frac{i_{Rs}}{a}; \quad \delta_0 = (2Q)^{-1}; \quad (2)$$

$$\xi = \xi_0 - \frac{k^2 \ell}{2} \frac{i_{Rc}}{a},$$
(3)

* Эти условия являются наиболее выгодными с экспериментальной точки эрения, т.к. в соответствии с/4/ амплитуда сигнала возрастает с увеличением Q при выполнении условия оптимизации $k^2Q = 1$.

5

где ${}^{i}{}_{Rs}$, ${}^{i}{}_{Rc}$ – амплитуды первых синусной и косинусной гармоник тока l_{R} , нормированного на критический ток слабого контакта l_{n} .

Ток і_R≈І_R/І₀ может быть найден из уравнения для потоков в СКВИДе, которое в обычной резистивной модели записывается в виде

$$i_{R} = \sin \phi + \Omega \dot{\phi} = \frac{a \cdot \cos \tau + \phi_{e} - \phi}{\ell}.$$
 (4)

Здесь дифференцирование проводится по безразмерному времени $r = \omega t$ и введены следующие обозначения: $\phi = 2\pi (\Phi/\Phi_0)$ и $\phi_e = 2\pi (\Phi_e/\Phi_0)$ – приведенные величины потока в СКВИДе Φ и внешнего постоянного потока смещения Φ_e ; $\Omega = \omega/\omega_0$, где $\omega_0 = 2\pi \frac{10R}{\Phi_0}$ – характерная частота контакта, R – его нормальное сопротивление.

Совместное решение уравнений (1) и (4) позволяет найти зависимость формы сигнала $a(\phi_e)$ от величины расстройки ξ_0 при любых значениях параметра ℓ . Например, используя (1) и (4), можно получить выражение для формы сигнала в безгистерезисном режиме для случая $\ell \ll 1^{/5,6/}$.

3. <u>Процессы, определяющие форму сигнала</u> интерферометра

Зависимость амплитуды колебаний напряжения в контуре $a(\phi_{a})$ от внешнего магнитного потока ϕ_{a} в гистерезисном (l>1) режиме работы интерферометра обусловлена возникновением в СКВИДе скачков потока и влиянием этих скачков на процессы в контуре. Скачки потока происходят, когда амплитудное значение суммарного магнитного потока ($\phi_{\mathbf{e}}$ +a) , приложенного к СКВИДу, достигает порогового значения ϕ_{N}^{*} , при котором ток через контакт становится равным критическому /1-5/ Такое состояние СКВИДа является неустойчивым, и происходит скачкообразное проникновение в него потока. Вследствие квантования поток в СКВИДе меняется на один квант, при этом ток в нем соответственно уменьшается и состояние СКВИДа в заданном поле становится устойчивым.

Ограничимся в дальнейшем рассмотрением лишь первого скачка в СКВИДе, точнее, первой пары скачков: скачка в новое состояние и обратно. Первый скачок (N=1) происходит при значении амплитуды колебаний в контуре, равном a₁:

$$|\phi_{e}| + a_{1} = \phi_{1}^{*} = \sqrt{\ell^{2} - 1} + \arccos(-1/\ell).$$
 (5)

При этом ввиду периодичности зависимости тока в СКВИДе i_R от внешнего потока ϕ_e с периодом по ϕ_e , равным 2π /1-5/, в формуле (5) $|\phi_e| \le \pi$.

Появление скачков в СКВИДе приводит к изменению значений i_{Rs} , i_{Rc} соответственно на величины Δi_{Rs} и Δi_{Rc} . Физически это означает, что скачки потока в СКВИДе вызывают дополнительную диссипацию энергии (т.е. увеличивают эффективное затухание (2), так как $\Delta i_{Rs} < 0$), а также вносят положительный вклад в эффективную расстройку (3), т.к. $\Delta i_{Rc} < 0$.

Таким образом, возникновение скачков в СКВИДе изменяет эффективный импеданс контура $Z = \delta + j\xi$, причем это изменение зависит от значения внешнего магнитного потока ϕ_e . Это приводит к появлению зависимости $a(\phi_e)$, так как из уравнения (1) следует, что $a \sim |\delta + j\xi|^{-1}$. Представляется удобным провести качественное исследование формы сигнала $a(\phi_e)$, используя построения на комплексной плоскости эффективного последовательного импеданса колебательного контура (рис.2).

При положительных и небольших отрицательных расстройках ξ (рис.2а) скачки потока в СКВИДе ведут к увеличению модуля импеданса контура. При этом источник накачки становится недостаточно эффективным для поддержания прежней амплитуды колебаний, при которой произошел скачок. Вследствие этого скачки потока в СКВИДе происходят не в каждом периоде радиочастотных колебаний. При увеличении амплитуды колебаний источника накачки ϵ (при постоянном ϕ_e) скачки потока в СКВИДе происходят чаще, однако амплитуда колебаний в контуре не превышает порогового значения, определяемого условием (5). При достаточной величине накачки ϵ

Рис.2. Эффективный комплексный импеданс колебательного контура со СКВИДом при положительном значении расстройки ξ_0 (а), при большом отрицательном значении расстройки ξ_0 (в) и при пороговом значении расстройки $\xi_0 = \xi_{\Pi}$ (б). Тонкие одинарные стрелки – импеданс без скачков в СКВИДе, двойные – при скачке в каждом периоде колебаний.

скачки потока происходят в каждом периоде РЧ-колебаний и амплитуда колебаний а начинает расти при дальнейшем увеличении ϵ вплоть до возникновения следующей пары скачков. Наличие такой зависимости $a(\epsilon)$, имеющей вид чередующихся плато и подъемов, приводит $^{/1-5/}$ к обычной треугольной форме сигнала $a(\phi_e)$ (рис.16,3а). Это следует, в частности, из условия (5), которое дает линейную зависимость $a_1(\phi_e)$ с периодом по ϕ_e , равным 2π , при условии, что отклонения амплитуды Δa от порогового значения малы ($\Delta a/a\sim k^2<<1$).

В случае больших отрицательных расстроек появление скачков в СКВИДе может приводить к уменьшению модуля эффективного импеданса контура (рис.2в). При

Рис.3. Поведение сигнала интерферометра $\mathbf{A}(\Phi_e)$ при синусоидальном изменении потока смещения Φ_e и синхронной развертке в экспериментах с положительным (а) и большим отрицательным (б) значением расстройки ξ_0 .

этом процессы дополнительной диссипации (при скачках) в СКВИДе перекомпенсируются уменьшением модуля эффективной расстройки ξ . Поэтому после возникновения первых скачков произойдет резкое увеличение амплитуды радиочастотных колебаний в контуре,

8

9

причем скачки (одна или несколько пар) будут происходить теперь каждый период колебаний. Таким образом, при отрицательных расстройках, больших некоторой пороговой, на зависимости $a(\phi_e)$ появляются "скачки" ("прямоугольная" форма сигнала на рис. 1в).

Следует отметить, что резкое увеличение амплитуды колебаний в контуре при возникновении скачков в СКВИДе соответствует резкому увеличению амплитуды радиочастотного потока, приложенного к СКВИДу, при неизменном внешнем потоке смещения ϕ_e . Поэтому для возвращения на нижний уровень амплитуды колебаний в контуре (т.е. для прекращения скачков) нужно приложить к СКВИДу некоторый отличный от нуля дополнительный поток смещения $\Delta \phi_e < 0$.

Следовательно, зависимость $a(\phi_e)$ будет иметь для сигнала прямоугольной формы гистерезисный характер (рис.36) - в отличие от обратимого поведения $a(\phi_e)$ для сигнала треугольной формы (рис.3а). Этот эффект затрудняет непосредственное использование в эксперименте участков с большой крутизной на характеристике $a(\phi_e)$ с целью повышения чувствительности интерферометра $\gamma = |dA/d\Phi_e|$.

4. Вычисление пороговой расстройки

Использование уравнений (1) и (4) позволяет вычислить пороговое значение расстройки ξ_{Π} (рис.26), которое определяет границу между режимами с треугольной формой сигнала ($\xi > \xi_{\Pi}$) и режимами, в которых форма сигнала становится прямоугольной ($\xi < \xi_{\Pi}$). В качестве примера рассмотрим случай $\ell >>1$, $\Omega << \ell^{-1/2}(6)$ и, как и ранее, ограничимся рассмотрением лишь первого скачка в СКВИДе. Условие $\Omega << \ell^{-1/2}$, как будет показано ниже, позволяет при вычислении ξ_{Π} считать скачок потока в СКВИДе практически мгновенным (фактически скачок происходит за время $\Delta \tau$ порядка $\Omega^{/7/}$).

Учитывая условия (6), опустим в выражении (4) для тока $i_{\mathbf{R}}$ члены, содержащие ℓ^{-1} и Ω (заметим, что $\mathbf{a} \sim \ell$, $|\phi_{\mathbf{c}}| < \pi$). Это позволяет получить главный член разложения ϕ по степеням малых параметров ℓ^{-1} и Ω в виде:

$$\frac{\pi}{2} - \tau, \qquad \tau_{1} < \tau \le \tau_{2}, \\
\phi \simeq -\frac{3\pi}{2} - \tau, \qquad \tau_{2} < \tau \le \pi, \\
-\frac{7\pi}{2} + \tau, \qquad \pi < \tau \le 2\pi + \tau_{1}.$$
(7)

Заметим, что выражение (7) для ϕ в нашем приближении отличается от значений ϕ в пороговой модели (например, $^{/3/}$) лишь наличием наклонных, а не горизонтальных, участков на зависимости ϕ от приведенного значения $\phi_x = 2\pi(\Phi_x/\Phi_0)$ суммарного внешнего потока Φ_x , воздействующего на СКВИД (у нас $\phi_x = \phi_e + a \cdot \cos r$). В пороговой модели точная зависимость величины сверхпроводящего тока і через контакт от значения ϕ несущественна, и принимается, что при ϕ_x , меньших некоторого порогового значения $\phi_{x\Pi}$, СКВИД полностью диамагнитен, а при $\phi_x = \phi_{x\Pi}$ присходит скачок потока в СКВИДе на $\Delta \phi = 2\pi$. В нашем приближении надо принять $\phi_{x\Pi}$ равным $\phi_1 \simeq \ell + \pi/2$, причем скачки потока происходят при $\tau = \tau_1$ и $\tau = \tau_2$, где

$$\phi_{\mathbf{e}} + \mathbf{a} \cdot \cos \tau_{\mathbf{l}} = \phi_{\mathbf{l}} ; \quad \phi_{\mathbf{e}} + \mathbf{a} \cdot \cos \tau_{\mathbf{2}} = -\phi_{\mathbf{l}} + 2\pi.$$
 (8)

При увеличении амплитуды колебаний скачки начинаются при $r_1 = 0$, тогда $r_2 \simeq \pi - 2\sqrt{\pi - |\phi_e|} / \sqrt{l}$.

Используя (4) и (7), можем теперь найти выражения для і Rs ^и і Rc :

$${}^{4}_{Rs} = \frac{1}{\pi} \int_{0}^{2\pi} \frac{\phi_{e} + a \cdot \cos \tau - \phi}{\ell} \sin \tau \cdot d\tau = -\frac{4}{\ell} \quad ,$$
(9)

$$i_{Rc} = \frac{1}{\pi} \int_{0}^{2\pi} \frac{\phi_{e} + a \cdot \cos \tau - \phi}{\ell} \cos \tau \cdot dr = (\frac{a}{\ell} - \frac{4}{\pi \ell}) - \frac{4\sqrt{\pi - |\phi_{e}|}}{\ell^{3/2}}$$

Как видно из (9), изменения Δi_{R_S} и Δi_{R_C} при появлении скачков в СКВИДе равны

$$\Delta i_{Rs} = i_{Rs} = -4/\ell \quad ; \quad \Delta i_{Rc} = -\frac{4\sqrt{\pi - |\phi_e|}}{\ell^{3/2}}.$$
(10)

Нетрудно показать, что используя пороговую модель, мы пришли бы к тем же результатам для Δi_{Rs} и Δi_{Rc} .

Учет времени скачка $\Delta \tau \sim \Omega$ приведет к появлению в выражениях (8) для τ_1 и τ_2 добавочных членов порядка Ω , а это скажется на величинах Δi_{R_5} и Δi_{R_c} лишь при $\Omega \sim \ell^{-1/2}$, что и было использовано выше при введении ограничений (6).

Далее, из уравнения (1) и выражений (2,3,10) следует, что относительные приращения (Δа/а) амплитуды колебаний в контуре при возникновении скачков в СКВИДе малы, именно:

$$(\Delta a/a) \sim (k^2 Q) \cdot \Delta i_{Rs} \sim \Delta i_{Rs} \ll 1, \qquad (11)$$

так как мы рассматриваем режим работы интерферометра, близкий к оптимальному ($k^2 Q \sim 1$). Это позволяет принять в качестве ξ_{Π} такое значение расстройки ξ , при котором приращение импеданса направлено по касательной к окружности постоянного модуля импеданса (рис.26). При этом величина пороговой расстройки ξ_{Π} определяется следующим выражением:

$$\xi_{\Pi} / \delta_{0} \simeq - \left| \frac{\Delta i_{Rs}}{\Delta i_{Rs}} \right|, \qquad (12)$$

которое в нашем случае дает значение ξ_{Π} , равное

$$\xi_{\Pi} = -\delta_0 \frac{\sqrt{\ell}}{\sqrt{\pi - |\phi_e|}} \,. \tag{13}$$

Выражение (13) справедливо лишь при $(\pi - |\phi_e|) >> \ell^{-1}$, в противном случае при вычислении i_{Rc} , i_{Rs} нужно учитывать, помимо (7), следующие члены в разложении выражения для ϕ . Величина пороговой расстройки ξ_{Π} , определяемая выражением (13), качественно согласуется с экспери-ментом.

5. <u>Заключение</u>

Проведенное исследование прямоугольной формы сигнала интерферометра (в области больших отрицательных расстроек) показывает, что особенностью этого сигнала $\mathbf{A}(\Phi_{\mathbf{p}})$ на низких рабочих частотах ($\Omega << 1$) является наличие гистерезиса. Это, как было отмечено выше, не позволяет простым способом использовать участки с большой крутизной $\gamma = | dA / d\Phi_{c} |$ для повышения чувствительности интерферометра. Так как наличие двух четко выраженных скачков в СКВИДе является причиной гистерезисного вида исследованной прямоугольной формы сигнала $\mathbf{A}(\Phi_{\mathbf{e}})$, то представляется интерсным исследование режима высоких рабочих частот $\Omega < 1$, при котором время скачка сравнимо с периодом колебаний в контуре. Возможно, этот режим позволит получить увеличение эффективной крутизны характеристики $\mathbf{A}(\Phi_{\mathbf{x}})$ и соответствующее повышение чувствительности интерферометра.

Литература

- J.Clarke. PIEEE, <u>61</u>, 7 (1973). Дж. Кларк. ТИИЭР, <u>61</u>, 9 (1973).
 J.M.Giffard, R.A.Webb, J.C.Wheatley, J.Low Temp.Phys. <u>6</u>, 533 (1972).
 H.Simmonds, W.Parker.J.Appl.Phys., <u>42</u>, 38 (1971).
 Б.В.Васильев, А.И.Иваненко, В.Н.Трофимов. Препринт ОИЯИ, P13-7429, Дубна, 1973.
- 5. Б.В.Васильев, В.В.Данилов, К.К.Лихарев. Препринт ОИЯИ, Р13-8233, Дубна, 1974.
- 6. P.K.Hansma.J.Appl.Phys., <u>44</u>,4191(1973).
- 7. J.E.Mercereau.Rev.Phys.Appl., 5, 13(1970).

Рукопись поступила в издательский отдел 14 апреля 1975 года