СООБЩЕНИЯ Объединенного института ядерных исследований дубна

-83

P13-83-47

А.И.Белесев, Е.В.Гераскин, В.Г.Гребинник,
В.Н.Дугинов, В.А.Жуков, А.Б.Лазарев,
А.П.Маныч. В.И.Медведев, Г.И.Селиванов,
А.И.Смирнов, Г.Л.Соколов,
В.И.Травкин, Н.Н.Чернов
СВЕРХПРОВОДЯЩАЯ МАГНИТНАЯ ЛОВУШКА
И МЕЗОРЕНТГЕНОВСКАЯ МИШЕНЬ УСТАНОВКИ
ДЛЯ ИССЛЕДОВАНИЯ
РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ
ЛЕГКИХ МЕЗОАТОМОВ

2549

ВВЕДЕНИЕ

В работе $^{/1/}$ предложен эксперимент по определению длин (πp) -и (πd) -рассеяний путем прецизионного измерения смещения спектра мезорентгеновского излучения $2p \rightarrow 1s$ переходов в $(\pi^- p)$ -и $(\pi^- d)$ -мезоатомах за счет сильного взаимодействия.

Схема эксперимента следующая /рис.1/: пучок протонов /4/ синхроциклотрона облучает пионообразующую мишень /3/, выполненную в виде протяженного стержня, под небольшим углом к оси стержня. Пионообразующая мишень находится внутри камеры /2/ /которую в дальнейшем будем называть мезорентгеновской мишенью/ с газообразным веществом /водород, дейтерий/. Пионообразующая и мезорентгеновская мишени размещаются внутри магнитной ловушки /1/. Вылетающие из мишени *т*-мезоны удерживаются магнитным полем ловушки, тормозятся в газе мезорентгеновской мишени и образуют

пион-нуклонные атомы.Энергия рентгеновского излучения таких атомов измеряется с помощью кристалл-дифракционного спектрометра. В качестве детектора рентгеновских квантов /5/, отраженных от плоскостей кристалла /6/ спектрометра, используется пропорциональный счетчик /8/, защищенный мощной защитой /9/ от фоновых частиц.

Оценки показали, что при проведении эксперимента на синхроциклотроне ЛИЯФ /1/ /энергия протонов 1 ГэВ, интенсивность 10¹² 1/с, сечение пучка 0,6х2,5 см²/ в мезорентгеновской мишени /объем 150 л, плотность газа 2·10⁻³ г/см³/, помещенной в магнитную ловушку /поле в центре ловушки ~2,0 Т, на концах ~4,0 Т/, число остановок π^- -мезонов может быть 3·10⁸ 1/с. При таком числе остановок π^- -мезонов в газе, благодаря близкому расположению пионообразующей и мезорентгеновской мишеней, для точного определения энергии 2p + 1s перехода в экспериментах на слаботочном ускорителе типа синхроциклотрон возможно применение кристалл-дифракционного спектрометра. Для приведенных выше экспериментальных условий с учетом размеров рабочей области мезорентгеновской мишени, телесного угла спектрометра и эффективности регистрации получена оценка скорости счета рентгеновских квантов, равная 0,85 1/с /1/.

Заметим, что в экспериментах ^{/2/}, выполненных на слаботочном ускорителе, в обычной постановке, когда образование мезоатомов происходит в газовой мишени, установленной на сформированном пучке пионов, число остановок пионов в газе слишком мало, чтобы можно было использовать для измерения энергии мезорентгеновских переходов кристалл-дифракционный спектрометр. Поэтому применение кристалл-дифракционного спектрометра для решения подобной задачи на выведенном пучке пионов было осуществлено лишь на ускорителе типа "мезонная фабрика" ^{/3/}.

В настоящей работе приводятся подробное описание и результаты испытаний криогенных устройств рассмотренной выше установки, а именно: сверхпроводящей магнитной ловушки и газовой мезорентгеновской мишени.

КОНСТРУКЦИЯ

Схематический чертеж сверхпроводящей магнитной ловушки с заключенной в ее рабочий объем мезорентгеновской мишенью представлен на рис.2.

Сверхпроводящая магнитная ловушка создана на базе магнитной системы, описанной ранее ^{/4/}. Ловушка состоит из двух автономных катушек /19/, разделенных зазором. Они создают горизонтально направленное магнитное поле. Каждая катушка имеет свой собственный криостат /12/. Криостаты подвешиваются на тонкостенных растяжках из нержавеющей стали к станинам /10/, которые откатываются во время профилактических работ по направляющим фермы /1/,осво-

Рис.2. Схематический чертеж установки: разрез мезорентгеновской мишени в горизонтальной плоскости /a/; чертеж сверхпроводящей магнитной ловушки /б/. 1 – ферма; 2 – тележка; 3 – выходное окно пучка протонов; 4 – пионообразующая мишень; 5 – сильфон; 6 – вакуумный кожух; 7 – площадка; 8 – гелиевый бачок; 9 – азотный бачок; 10 – станина криостата; 11 – опорное кольцо; 12 – криостат; 13 – азотный экран; 14 – входное окно пучка; 15 – окно для выхода у -квантов; 16 – вакуумопровод спектрометра; 17 – теплообменник; 18 – мезорентгеновская мишень; 19 – сверхпроводящая катушка.

бождая доступ к мезорентгеновской мишени /18/. Растяжки криостатов могут регулироваться по длине, так что имеется возможность юстировки катушек относительно друг друга с целью совмещения их магнитных осей. Температурные усадки растяжек компенсируются

Таблица

Характеристики сверхпроводящей магнитной ловушки

Внутренний диаметр катушек	-	380 мм
Внешний диаметр катушек	-	750 мм
Высота отдельной катушки	-	186 MM
Число катушек	-	2
Расстояние между центрами катушек	-	680 мм
Число витков в катушке	-	1685
Индуктивность катушки	-	1,5 Гн
Взаимоиндуктивность катушек	-	0,08 Гн
Сверхпроводящий материал - сплавы		NbTi, NbZr
Магнитное поле в центре	-	1,96 T
Магнитное поле в "пробках"	-	3,68 T
Запасенная магнитная энергия	-	1,5 M,D,ж
Конструктивная плотность тока	-	5,0.10 ³ A/cm ²
Максимальная плотность тока		
в сверхпроводнике	-	1,32·10 ⁵ А/см ²
Рабочий ток	-	950 A
Сила взаимного притяжения 2-х катушек	-	1,5.10 ⁶ H
Сопротивление для вывода энергии	-	2.0,25 OM
Максимальное напряжение вывода	-	2.260 B
Время быстрого вывода	-	25 c
Время ввода полного тока	-	35 мин
Расход жидкого гелия	-	20 л/ч
Расход жидкого азота	-	5 л/ч

с помощью набора тарельчатых пружин, расположенных в теплой зоне. В осевом направлении по отношению к вакуумному кожуху магнитная система жестко зафиксирована посредством текстолитовых опор, имеющих в средней части тепловой контакт с азотным экраном. Между криостатами располагается дюралюминиевое кольцо /11/, противодействующее взаимному притяжению катушек. Электропитание катушек осуществляется по специально разработанным токовводам ^{/5/}, проходящим через резервные гелиевые бачки /8/. Основные характеристики магнитной системы приведены в таблице.

Мезорентгеновская мишень /18/ имеет вид цилиндрической камеры объемом 150 л, расположенной вдоль оси магнитной системы. Пионообразующая мишень /4/, выполненная в виде медного стержня диаметром 6 мм и длиной 500 мм, подвешивается внутри этой камеры параллельно оси магнитной системы на расстоянии 25 мм от нее /рис.2a/ с помощью регулируемых растяжек. Пучок протонов падает под углом 2°10′ к оси мишени, так что она перекрывает всю ширину пучка. Мезорентгеновская мишень заполняется водородом /дейтерием/ высокой плотности /2·10⁻⁸ г/см³/. Газ указанной плотности получается путем понижения его температуры до 25 ÷ 35 К при давлении 2 ÷ 3 атм с помощью теплообменника /17/, охлаждаемого жидким водородом. Для ввода протонного пучка в камеру и вывода пучка из нее служат окна из лавсана /3, 14/ толщиной 250 мкм, которые крепятся на съемных фланцах камеры. На ближайшем к кристалл-дифракционному спектрометру фланце имеется также окно /15/ из лавсана толщиной 25 мкм и размером 10 х 160 мм², предназначенное для вывода рентгеновских лучей. Камера подвешена к вакуумному кожуху в средней части с помощью тонкостенных растяжек из нержавеющей стали, а с торцов центрируется по отношению к нему с помощью сильфонов /5/, которые одновременно отделяют вакуумный объем магнитной системы от вакуумного объема /16/ кристалл-дифракционного спектрометра.

ОБМОТКИ СВЕРХПРОВОДЯЩЕЙ МАГНИТНОЙ ЛОВУШКИ

В обмотках ловушки использованы кабели ^{/6/}, состоящие из скрученных сверхпроводящих и медных жил, связанных индием. Сверхпроводящие жилы диаметром 0,25 мм изготовлены из сплавов NbTi

Рис.3. Структура обмотки сверхпроводящей катушки: a/ сечение обмотки; б/ сечение кабелей; в/ характеристики кабелей.

Рис.4. Топография магнитного поля $H = \sqrt{H_R^2 + H_Z^2}$ сверхпроводящей магнитной ловушки в 1/4 сечения вдоль оси. Цифры – проценты от величины поля в центре, принятого за 100%.

и NbZr. Используется три типа кабелей, предназначенных для работы в различных магнитных полях. Число сверхпроводящих жил и количество стабилизирующего материала для каждого типа кабеля выбиралось с учетом распределения магнитного поля по сечению обмотки, в котором должен работать кабель. В связи с этим обмотка разбивалась на три секции, в каждой из которых использовался определенный тип кабеля: во внутренней секции - на основе сплава NbTi, во внешних - на основе сплава NbZr.

На рис.3 показана структура обмотки: разделение по секциям; конструкции кабелей, предназначенных для каждой секции; критические характеристики, полученные в результате исследования коротких образцов кабелей и небольших однослойных катушек на специальном измерительном стенде^{/5/}.

Рис.5. Распределение составляющей магнитного поля H_Z вдоль оси ловушки при расстоянии между центрами катушек 68 см. Плавная кривая - расчетная Q - экспериментальные значения.

С целью противодействия пондеромоторным силам внутренние секции обмоток стянуты слоями проволоки из нержавеющей стали. Снаружи обмотки стянуты бандажами из латунной ленты толщиной 6 мм.

На рис.4 и 5 представлено распределение магнитного поля ловушки, рассчитанное по программе, приведенной в работе ^{/7/}.

СИСТЕМЫ ОХЛАЖДЕНИЯ И ГАЗООБЕСПЕЧЕНИЯ

На рис.6 приведена схема охлаждения и газообеспечения сверхпроводящей магнитной ловушки. Начальное охлаждение осуществляется с помощью жидкого азота из танка /9/. После удаления жидкого азота и тщательной откачки его паров катушки охлаждаются жидким гелием из дьюаров /10/, поступающим в нижние точки криостатов /19/. Пополнение криостатов жидким гелием в процессе работы осуществляется либо из резервных бачков /2/, либо непрерывно из дьюаров путем подачи жидкости в верхние части криостатов /на рисунке магистрали не показаны/. Испаряющийся гелий вначале охлаждает токовводы соленоида, а затем поступает в линию сбора. В случае внезапного испарения гелия при переходе обмоток из сверхпроводящего состояния в нормальное происходит сброс гелия из криостатов через горловины большого сечения, параллельные горловинам токовводов, и предохранительные клапаны /14/ в газгольдер /11/.

Схема охлаждения и газообеспечения мезорентгеновской мишени представлена на рис.7. Камера /3/ в зависимости от условий эксперимента может быть заполнена водородом или дейтерием из баллона /6/. В случае постоянной работы с дейтерием необходимое его количество хранится в ресивере /14/. Удаление дейтерия из камеры производится насосом-компрессором /17/. Температура газа в камере /3/ поддерживается с помощью теплообменника /18/, по змеевику которого пропускается поток газожидкостной смеси водорода из дьюара /16/. Интенсивность потока регулируется с помощью стабилизаторов /7, 8/ давления газообразного гелия над поверхностью

6

7

Рис.6. Схема охлаждения и газообеспечения сверхпроводящей магнитной ловушки: 1 – катушка магнитной ловушки; 2 – гелиевый бачок; 3 – азотный бачок; 4 – азотный экран; 5 – вакуумный кожух; 6 – гелиевый баллон; 7 – паромасляный насос; 8, 15, 17 – форвакуумные насосы; 9 – азотный танк; 10 – гелиевый дьюар; 11 – мягкий газгольдер для сбора гелия; 12 – газовый счетчик; 13 – ротаметр; 14 – предохранительный клапан; 16 – азотный баллон; 18 – мезорентгеновская мишень; 19 – криостат.

жидкого водорода в дьюаре и регулятора /10/ расхода жидкого водорода. Давление в камере задается стабилизатором /9/, а температура определяется конденсационными термометрами /4/.

СИСТЕМА ЭЛЕКТРОПИТАНИЯ, ЗАЩИТЫ И КОНТРОЛЯ

Электропитание обмоток магнитной ловушки осуществляется по известной схеме ^{/8,9/}, состоящей из выпрямителя, сильноточного регулятора тока и блоков установки и стабилизации рабочего тока /рис.8/.

В выпрямителе использованы понижающий трансформатор TCУ-50/0,5 А, включенный по схеме треугольник-звезда, и шестифазная схема выпрямления, собранная на вентилях типа BB-2-1250. Сильноточный регулятор тока представляет собой набор модулей, содержащий 330 параллельно включенных транзисторов типа П2105. Ввод и вывод тока с заданной скоростью, а также его фиксация на

Рис.7. Схема охлаждения и газообеспечения мезорентгеновской мишени: 1 – вакуумный кожух; 2 – азотный бачок; 3 – мезорентгеновская мишень; 4 – конденсационные термометры; 5 – азотный баллон; 6 – водородный /дейтериевый/ баллон; 7,8 – стабилизатор давления в водородном дьюаре; 9 – стабилизатор давления в мезорентгеновской мишени; 10 – регулятор расхода жидкого водорода; 11 – пламепреградитель; 12 – резервная азотная емкость; 13 – вакуумный насос; 14 – ресивер для дейтерия; 15 – гелиевый баллон; 16 – водородный дьюар; 17 – насос-компрессор; 18 – теплообменник.

любом выбранном уровне осуществляются с помощью времязадающего каскада. На выходе этого каскада установлен электромотор М, связанный с осью гелипота R_3 подачи опорного напряжения на один из входов схемы сравнения. На другой ее вход поступает сигнал обратной связи с шунта $R_{\rm Ш}$, в качестве которого используется стандартный масляный шунт типа ШМ-8. После соответствующего усиления в предусилителе полученный на выходе схемы сравнения сигнал открывает транзисторный регулятор для достижения заданной величины рабочего тока с одновременной его стабилизацией.

Проведенные неоднократные включения системы электропитания на рабочую нагрузку показали, что при любых величинах рабочего тока его стабильность лучше <u>+0</u>,1%. Скорость автоматического ввода и вывода может регулироваться в пределах от 20 до 50 А/мин.

Рис.8. Схема электропитания и защиты сверхпроводящей магнитной ловушки.

Сравнительно большая суммарная индуктивность L = 3 Гн и рабочий ток I = 1000 А позволяют записать в магнитном поле ловушки значительную энергию E = LI $^2/2 = 1,5$ МДж. В случае внезапного нарушения сверхпроводящего состояния обмоток предусмотрена эвакуация этой энергии во внешние защитные сопротивления R_1 и R_2 величиной 0,25 Ом, собранные из стандартных чугунных секций.

Момент перехода каждой обмотки из сверхпроводящего состояния в состояние нормальной проводимости определяется индикатором сигнала перехода, представляющим собой сбалансированную мостовую схему, два плеча которой образуются самой обмоткой, разделенной на равные части средней точкой, а два других плеча - резисторами. При нарушении сверхпроводимости в какой-либо из обмоток в диагонали моста появляется сигнал разбаланса, который после усиления соответствующим биополярным усилителем сигнала перехода поступает в блок управления автоматическим выключателем АВМ-15Н. Происходит разрыв силовых контактов К₁ и К₂, и энергия всей магнитной системы выводится в защитные сопротивления R₁ и R₂. Чувствительность биополярных усилителей изменяется дискретно от 10 мВ до 2 В с шагом 50 мВ. Время срабатывания схемы защиты /от момента поступления сигнала перехода до момента разрыва контактов К₁ и К₂/ составляет 150 мс.

Процесс охлаждения обмоток ловушки от комнатной температуры до температуры жидкого гелия контролируется по изменению сопротивления самих обмоток, а также с помощью резисторов типа АлленБредли, размещенных в различных точках обмоток и криостатов. Такие же резисторы применяются для измерения температурных градиентов внутри рабочего объема мезорентгеновской мишени при ее стендовых испытаниях.

Для определения уровня жидкого гелия в криостатах используются датчики из отрезков сверхпроводящей проволоки (NbZr) с намотанными на нее подогревателями.

РЕЗУЛЬТАТЫ ИСПЫТАНИЙ

А. Испытания сверхпроводящей магнитной ловушки

Охлаждение. Ниже приводится перечень основных результатов, полученных при охлаждении магнитной системы.

Масса охлаждаемого металла	a 1200	кг
Расход жидкого азота на ох	клаждение	
от 300 до 77 К	800	л
Время охлаждения жидким аз	вотом 12	ч
Расход жидкого гелия на		
охлаждение от 77 до 4,2 К	360	л
Время охлаждения жидким ге	елием 15	ч
Расход жидкого гелия на ед	циницу	
массы металла	0,	3 л/кг.

График охлаждения магнитной системы от 77 до 4,2 К и ее отогрева после прекращения работы приведен на рис.9. Испытания показали, что значение удельного расхода жидкого гелия /0,3 л/кг/ указывает на эффективное использование его паров при охлаждении системы.

Теплоподвод в рабочих условиях. Расчетное значение расхода жидкого гелия из одного криостата, обусловленное теплопритоком по опорам, токовводам и излучением, составляет ~5,5 л/ч. При испытании отдельного криостата с обмоткой реально получено ~7,5 л/ч.

Испытания всей магнитной системы с двумя криостатами проводились в условиях, когда мезорентгеновская мишень находилась при температуре 77 К. В этом случае расход жидкого гелия при отсутствии тока в обмотке составил ~16 л/ч. При токе 1000 А. про-

пускаемом по двум парам токовводов, расход жидкого гелия увеличивается на ~2 л/ч. В случае непрерывной подпитки жидким гелием из дьюаров при работе

Рис.9. График охлаждения сверхпроводящей магнитной ловушки.

с током 1000 А расход несколько выше из-за испарения в переливных сифонах, а также, по-видимому, вследствие акустических эффектов, и составляет ~20 л/ч.

Ввод тока. Испытания проводились при скорости ввода тока в обмотку 25 А/мин. Во время ввода тока с помощью электронного потенциометра ПДС-021 контролировался потенциал на клеммах обмоток, погруженных в ванну с жидким гелием. Как видно из рис.10, где представлена вольт-амперная характеристика магнитной ловушки во время одного из циклов ввода в нее тока, наблюдаются колебания этого потенциала, обусловленные скачками потока. В данном случае колебания потенциала в конце цикла ввода тока не превышают 0,2 ÷ 0,4 В. Однако амплитуда и частота этих колебаний имеют тенденцию уменьшаться при последующих циклах ввода тока.

Критические токи. Перед сборкой магнитной ловушки каждая из сверхпроводящих катушек в своем криостате отдельно проходила всесторонние испытания: главным являлось установление величины тока, при котором катушка переходила в состояние нормальной проводимости. Было найдено, что значение критического тока для каждой катушки находится в пределах 1080-1100 А. Как видно из рис.10, значение максимального введенного тока для всей системы несколько ниже, чем для отдельных катушек, и составляет 1025 А.

Вывод энергии. С целью проверки эффективности работы системы защиты осуществлялся быстрый вывод магнитной энергии из катушек двумя путями: мгновенным отключением вручную источника питания при рабочем токе в обмотке 950 А и доведением тока до критического значения 1025 А. Осциллограмма вывода энергии представлена на рис.11.Максимальное напряжение на клеммах каждой из обмоток составляет 265 В /заметим, что изоляция обмоток и токовводов по отношению к корпусу установки была испытана при напряжении 3 кВ/. Время вывода энергии ~30 с.

При быстром отключении источника питания обмотки находятся в сверхпроводящем состоянии. Испарение гелия из криостатов происходит только за счет нагрева конструкционных материалов и об-

Рис.11. Осциллограмма вывода энергии при переходе одной из катушек с током 1025 А из сверхпроводящего в нормальное состояние.

мотки вихревыми токами при спаде поля. Как правило, в этом случае испарялось не более 20 л жидкости, на что тратилось 2% от всей запасенной энергии магнитного поля. Остальная часть энергии /98%/ выделялась на активной внешней нагрузке, нагревая ее приблизительно на 10 ℃.

В случае перехода в состояние нормальной проводимости при критическом токе 1025 А наблюдалась картина, аналогичная описанной выше. Относительно небольшое испарение жидкости из криостатов /20 л/ при таком переходе указывает на то, что возникшая нормальная зона в одной из катушек не успевает распространиться сколь-нибудь значительно до момента срабатывания защиты. После вывода энергии в обмотках не обнаруживается никаких "замороженных" токов.

Переход в состояние нормальной проводимости может произойти и при рабочем токе в случае значительного понижения уровня гелия в криостатах. Было замечено, что при токе 950 А система устойчиво работает длительное время, когда обмотки соленоида погружены всего на 3/4 в жидкий гелий.

Магнитное поле. На рис.4 изображены линии постоянной напряжен-

мости $H = \sqrt{H_R^2 + H_Z^2}$ магнитного поля ловушки в 1/4 пространства, полученные расчетным путем. На рис.5 представлен расчетный график распределения составляющей магнитного поля H_Z вдоль оси ловушки при расстоянии между центрами катушек 68 см. Здесь же нанесены экспериментальные значения для этой составляющей, полученные с помощью двух датчиков ЭДС Холла, один из которых располагался в центре ловушки, а другой - в центре симметрии одной из катушек. Предварительно эти датчики были откалиброваны в широком диапазоне температур от 4,2 до 300 К по датчику ЯМР. Измерения показали, что индукция магнитного поля в центре ловушки составляет 1,96 T, а в центре симметрии отдельной катушки -3,68 T.

Б. Испытания мезорентгеновской мишени

Согласно работе /1/ максимальный выход рентгеновских квантов из пион-нуклонных атомов ожидается при плотности наполняющего мезорентгеновскую мишень газа 2·10⁻⁸ г/см⁸. При этом следует принять меры по исключению значительных отклонений в плотности по объему камеры, вызванных градиентами температуры. В противном случае возможны искажения спиральных траекторий пионов, что может привести к сужению области остановок пионов, находящейся в поле зрения кристалл-дифракционного спектрометра.

Изучение температурного режима мезорентгеновской мишени было произведено при наполнении ее водородом. Указанная выше плотность /2.10⁻³ г/см⁸/ получена путем охлаждения водорода до 28 К при давлении 2 атм. С помощью регулятора /10, рис.7/ и стабилизатора /9, рис.7/ температура и давление газа в камере поддерживались с точностью 2%. Градиент температуры по высоте камеры в разных ее сечениях измерялся с помощью резисторов Аллен-Бредли, расположенных как указано на рис.12. Абсолютное измерение температуры производилось с помощью конденсационных термометров, представляющих собой медные колбы, соединенные капилляром с образцовым манометром.

При облучении пионообразующей мишени пучком протонов энерговыделение в ней по расчету составляет 25÷30 Вт. Для имитации работы в условиях облучения пучком мезорентгеновской мишени приблизительно на место расположения пионообразующей мишени вводился линейный нагреватель длиной 50 см и мощностью 35 Вт. Результаты измерений распределения температуры без нагревателя и с нагревателем представлены на рис.12. Видно, что градиент

Рис.12. Распределение температуры в объеме мезорентгеновской мишени: О – без нагревателя, С – с нагревателем /35 Вт/. 1 – контур стенки мезорентгеновской мишени, 2 – нагреватель, 3 – теплообменник. температуры по высоте камеры в разных ее сечениях в рабочей области не превышает $4 \div 5$ К, что соответствует изменению плотности $\pm 10^{-4}$ г/см³. Отметим также, что в нижней точке камеры имеется небольшое количество жидкого водорода, которое не может оказывать влияния на траектории пионов, поскольку пренебрежимо малое число их пересекает эту область.

ЗАКЛЮЧЕНИЕ

Проведенные испытания показали надежную работу криогенных устройств установки. Полученные экспериментальные данные находятся в хорошем согласии с расчетными значениями.

Сверхпроводящая магнитная ловушка устойчиво работает при токе 950 А, что соответствует конструктивной плотности тока 5 кА/см². Измеренная индукция магнитного поля в ловушке соответствует расчетному значению и составляет в центре 2 Т, на краях 3,7 Т со стабильностью не хуже 0,1%.

Дальнейшее улучшение установки связано с использованием в обмотках сверхпроводящей магнитной ловушки проводников новейших типов. В конструкции установки предусмотрена возможность замены обмоток на новые с целью изменения параметров и геометрии магнитного поля.

Мезорентгеновская мишень обеспечивает заданную плотность газа ~2.10⁻³ г/см⁸ для получения наибольшего выхода рентгеновских квантов $2p \rightarrow 1s$ перехода.

В заключение авторы выражают благодарность В.М.Лобашеву за инициирование работы; В.П.Джелепову, Б.М.Понтекорво, О.И.Сумбаеву за постоянное внимание к работе; Н.Н.Антоновой, Ю.А.Гребинник, Н.И.Максимовой, С.Н.Шилову за монтаж электронных блоков; Г.Д.Соболевой за участие в разработке чертежей установки; А.Б.Аполлонову, Ю.В. Курбакову, В.В.Ракалю, В.Ф.Савченкову, А.И.Щаднову за участие в монтаже и испытаниях установки; И.Н.Красильникову, А.И.Ланенкину, В.А.Целякову, А.Н.Шевенину за участие в изготовлении отдельных узлов; Г.Н.Варму, А.Г.Харитонову за обеспечение жидким гелием; В.И.Поромову за помощь при монтаже и испытании установки.

ЛИТЕРАТУРА

- 1. Амальский Г.М. и др. Препринт ЛИЯФ, №337, Л., 1977.
- 2. Bailey J. et al. Phys.Lett., 1974, 50B, p. 403.
- 3. Bovet E. et al. Nucl.Instr. and Meth., 1981, 190, p. 613.
- 4. Багдасаров С.К. и др. ОИЯИ, 13-4466, Дубна, 1969, с. 138.
- 5. Гераскин Е.В. и др. ОИЯИ, 13-4466, Дубна, 1969, с. 146.

6. Богач В.А. и др. ОИЯИ, 13-5211, Дубна, 1970. 7. Ткачев Л.Г. ОИЯИ, 13-4466, Дубна, 1970, с. 150. 8. Fietz W.A. Rev.Sci.Instr., 1965, 36, p. 1306.

9. Киселев Ю.Ф. ОИЯИ, Р13-6231, Дубна, 1972.

Белесев А.И. и др.

Сверхпроводящая магнитная ловушка и мезорентгеновская мишень установки для исследования рентгеновского излучения легких мезоатомов

Описываются сверхпроводящая магнитная ловушка с внутренним диаметром катушек 380 мм и газовая низкотемпературная камера /мезорентгеновская мишень/, предназначенные для обеспечения интенсивного образования пионных атомов в газовой среде /водород, дейтерий/. Сверхпроводящая магнитная ловушка при рабочем токе 950 А создает магнитное поле в центре системы 2,0 Т и на краях 3,7 Т. Внутри магнитной ловушки располагается мезорентгеновская мишень, содержащая в себе твердую пионообразующую мишень, облучаемую пучком протонов от ускорителя, и окружающий ее газ /водород, дейтерий/, в котором захваченные ловушкой #-мезоны тормозятся, образуя мезоатомы. Необходимая плотность газа /2·10-8 г/см³/, обеспечивающая максимальную интенсивность рентгеновских квантов 20 - 1s перехода, достигается при понижении его температуры до 28 К при давлении 2 атм.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1983

Belesev A.I. et al.

P13-83-47

P13-83-47

A Superconducting Magnetic Trap and Mesic X-Ray Target of the Installation for Investigation of Light Mesic Atoms X-Radiation

A superconducting magnetic trap (inner diameter of coils-380 mm) and a gas low temperature chamber (mesic X-ray target) intended to provide for the intense production of pionic atoms in a gas environment are described. Magnetic trap at 950 A operating current produces the magnetic field of 2 T at the centre and 3.7 T at ends of the system. The mesic X-ray target is inside the magnetic trap. It contains solid pion producing target irradiated with protons from the accelerator, and surrounding this target (hydrogen, deuterium). Trapped in the magnetic field #-mesons are stopped producing pionic atoms. The necessary gas density $(2 \cdot 10^{-8} \text{ g/cm}^8)$. providing maximum intensity of $2p \rightarrow 1s$ transition X-rays, is achieved by reducing its temperature up to 28 K at 2 atm pressure.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Communication of the Joint Institute for Nuclear Research, Dubna 1983

Перевод О.С.Виноградовой.