

В.Ф.Бобраков, В.Фодель

СИНХРОННЫЙ СЕТЕВОЙ ФИЛЬТР ДЛЯ БИОМАГНИТНЫХ ИССЛЕДОВАНИЙ С ПРИМЕНЕНИЕМ СКВИДа

Направлено в журнал "Приборы и техника эксперимента"

1982

В настоящее время наиболее чувствительным прибором среди применяемых для биомагнитных исследований является сверхпроводящий квантовый интерферометр /СКВИД/. Собственные шумы магнитометра на основе СКВИДа составляют ~10⁻¹⁴ T/Гц ^{1/2}. Такая чувствительность прибора позволяет изучать магнитные поля сердца, мозга, мышц, суставов и т.д.^{/1-4/}.Получение высокой чувствительности в настоящее время - преодоленный этап для многих лабораторий, в то время как борьба с промышленными и естественными магнитными помехами является технически сложной задачей, которая решена еще не во всех случаях.

Использование экранированной комнаты позволяет, в принципе, решить эту проблему, однако создание ее – дело очень трудоемкое и дорогостоящее, поэтому желательно иметь аппаратуру, способную работать в обычной "открытой" лаборатории. В этих условиях основным видом помех является магнитная наводка на частоте промышленной сети 50 Гц и ее гармониках 100, 150 Гц и т.д. Для борьбы с этими помехами нами был разработан синхронный режекторный фильтр, эффективно подавляющий как помеху на частоте 50 Гц, так и ее гармоники вплоть до 16-й. Цель настоящей работы – описание принципа действия и конструкции этого фильтра.

По принципу действия фильтр относится к так называемым N канальным. В таких фильтрах спектр входного сигнала переносится в область низких частот, подвергается обработке низкочастотными фильтрами, а затем производится обратное преобразование /5,6/.

Функциональная схема фильтра представлена на рис.1. Сигнал, поступающий на его вход, подается через резистор на конденсаторы СР С32. Эти конденсаторы последовательно коммутируются МОПключами S1÷S32 со входом операционного усилителя. Период коммутации равен периоду частоты промышленной сети, то есть составляет 20 мс.

При наличии на входе постоянного напряжения или сигнала с частотой 50 Гц, а также гармоник этой частоты происходит заряд конденсаторов C1÷C32 с постоянной времени r = NRC, где N - чис-ло конденсаторов, R - сопротивление входного резистора, C - емкость одного конденсатора. Для таких сигналов коэффициент передачи фильтра близок к нулю. Для сигналов с другими частотами, то есть полезных сигналов, коэффициент передачи фильтра равен 5.

Синхрогенератор, управляющий МОП-ключами, работает синхронно с промышленной сетью 50 Гц. Это достигнуто применением фазовой автоподстройки частоты /ФАПЧ/. Частота на выходе двоичного счетчика составляет 1/32 от частоты управляемого генератора 1600 Гц. Полученный сигнал подается на первый вход фазового детектора,

1

Рис.1. Блок-схема синхронного режекторного фильтра.

на второй вход которого подано опорное прямоугольное напряжение, сформированное из промышленного сетевого напряжения. Выходное напряжение ФД задает частоту управляемого генератора. В результате достигается синхронная работа фильтра на частоте сети. Полоса захвата ФАПЧ составляет 2 Гц, а полоса удержания - 6 Гц.

Управляющие импульсы для МОП-ключей вырабатываются дешифратором, к выходам которого подключены преобразователи логического уровня ТТЛ в уровни 0 ÷ -12 В. Выходной сигнал подвергается дополнительной фильтрации низкочастотными фильтрами с частотой среза 150 или 40 Гц.

Полоса режекции фильтра на уровне -3 дБ составляет:

 $\Delta f = \frac{1}{2\pi NRC}.$ /1/

Глубина подавления зависит от числа звеньев N и номера гармоники k $^{/5/2}$

$$a_{sk} = -20 \log \left[1 - \left(\sin \frac{k \pi}{N} / \frac{k \pi}{N} \right)^2 \right].$$
 /2/

В нашем случае N = 32. Зависимость глубины подавления помех фильтром от номера гармоники k приведена в таблице.

Принципиальная схема фильтра представлена на рис.2. Прямоугольное напряжение с частотой 50 Гц формируется из сетевого напряжения компаратором ДА10. На микросхеме ДДб выполнен управляемый генератор на 1,6 кГц. Делитель частоты /1:32/ собран на микросхемах ДДЗ и ДД4. Выходное напряжение с фазового детектора Д5/2 интегрируется цепочкой R73, C37, усиливается по мощности повторителем VT65 и управляет частотой генератора 1,6 кГц.

2

3

Таблица

Зависимость глубины подавления помех фильтром a_{sk} от номера' гармоники k

1

k	1	2	3	4	5	6	
f /Гц/	50	100	150	200	250	300	
а _{sk} /дБ/	49,9	37,9	30,9	26,0	22,0	19,1	

Двоичный дешифратор составляют микросхемы ДД1 и ДД2. На транзисторах VT1-VT32 собран преобразователь логических уровней ТТЛ в уровни 0÷-12 В для управления МОП-ключами VT33÷VT64, которые входят в состав микросхем ДА1÷7.

Фильтры низкой частоты с частотами среза 150 и 40 Гц выполнены на операционных усилителях ДА9 и ДА11 с полевыми транзисторами на входе.

Прибор занимает один модуль двойной ширины в стандарте КАМАК. Измерения основных параметров фильтра показали, что величина подавления помехи с частотой 50 Гц составляет 49 дБ. Это значение близко к теоретическому 49,9 дБ, рассчитанному по формуле/2/.

На рис.3 показана полученная экспериментально частотная характеристика подавления помех фильтром на частотах вблизи первых трех гармоник сетевой частоты. Полоса режекции по уровню -3 дБ составляет Δf = 0,2 Гц.

Рис.3. Частотная характеристика фильтра.

Рис.4. Примеры записи сигнала магнитометра при выключенном и включенном фильтре.

Рис.5. Магнитокардиограмма здорового человека. Записана в реальном времени в полосе частот 0,1 :40 Гц в открытой лаборатории.

Фильтр применялся совместно со сверхпроводящим магнитометромградиентометром для биомагнитных исследований.

Эффективность работы фильтра при измерении магнитного поля иллюстрирует рис.4, на котором приведены примеры записи калибровочного сигнала 1,5·10⁻¹¹ П при отключенном и включенном фильтре. При этом магнитометр был установлен в лаборатории с уровнем магнитной помехи $\approx 10^{-7}$ T.

Балансировка градиентометра была выполнена с точностью 10-3. Таким образом, суммарное подавление сетевой помехи для магнитокардиографа достигает 109 дБ. Пример магнитокардиограммы здорового человека, полученной с применением синхронного фильтра в лаборатории с уровнем помехи 10⁻⁸ ÷ 10⁻⁷ T, приведен на рис.5.

Авторы выражают глубокую бла́годарность Б.В.Ва́сильеву и М.Михаелису за интерес к работе и полезные обсуждения.

ЛИТЕРАТУРА

- 1. Brenner D., Kaufmann L., Williamson S.J. IEEE TRANS. on Magnetics, 1977, vol.MAG-13, No.1.
- 2. Barbanera S. et al. Sci.Instr., 1978, vol.11.
- 3. Kariniemi V., Katila T., Laine H. TKK-F-A362, Dec.1978.
- 4. Васильев Б.В., Колычева Е.В. "Медицинская техника", 1980, №2.
- 5. Щекотов А.Ю., Голявин А.М. ПТЭ, 1978, №4, с.175.
- 6. Heinlein W.E., Holmes W.H. Active Filters for Integrated Circuits, New York, 1974.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги, если они не были заказаны ранее.

Д13-11182	Труды IX Международного симпозиума по ядерной элект- ронике. Варна, 1977.	5	р.	00	к.
Д17-11490	Труды Международного симпозиума по избранным пробле- мам статистической механики. Дубна, 1977.	6	р.	00	к.
д6-11574	Сборник аннотаций XV совещания по ядерной спектроско- пии и теории ядра. Дубна, 1978.	2	р.	50	к.
Д3-11787	Труды III Международной школы по нейтронной физике. Алушта, 1978.	3	р.	00	к.
Д13-11807	Труды III Международного совещания по пропорциональ- ным и дрейфовым камерам. Дубна, 1978.	6	р.	'00	к.
	Труды VI Всесоюзного совещания по ускорителям заря- женных частиц. Дубна, 1978 /2 тома/	7	р.	40	к.
Д1,2-12036	Труды V Международного семинара по проблемам физики высоких энергий. Дубна, 1978	5	р.	00	к.
Д1,2-12450	Труды XII Международной школы молодых ученых по физике высоких энергий. Приморско, НРБ, 1978.	3	p.	00	к.
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/	8	р.	00	к.
Д11-80-13 Д	Труды рабочего совещания по системам и методам аналитических вычислений на ЭВМ и их применению в теоретической физике, Дубна, 1979	3	p.	50	к.
Д4-80-271	Труды Международной конференции по проблемам нескольких тел в ядерной физике. Дубна, 1979.	3	р.	00	к.
Д4-80-385	Труды Международной школы по структуре ядра. Алушта, 1980.	5	р.	00	к.
Д2-81-543	Труды VI Международного совещания по проблемам кван- товой теории поля. Алушта, 1981	2	р.	50	к.
Д10,11-81-622	Труды Международного совещания по проблемам математи- ческого моделирования в ядерно-физических исследова- ниях. Дубна, 1980	2	р.	50	к.
Д1,2-81-728	Труды VI Международного семинара по проблемам физики высоких энергий. Дубна, 1981.	3	р.	60	к.
Д17-81-758	Труды II Международного симпозиума по избранным проблемам статистической механики. Дубна, 1981.	5	р.	40	к.
Д1,2-82-27	Труды Международного симпозиума по поляризационным явлениям в физике высоких энергий. Дубна, 1981.	3	p.	20	к.
P18-82-117	Труды IV совещания по использованию новых ядерно- Физических методов для решения научно-технических и народнохозяйственных задач. Дубна, 1981.	3	р.	80	к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований

Рукопись поступила в издательский отдел 24 ноября 1982 года.

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

1

Индер	кс Тематика		ŕ	Описана конструкция синхронного режекторного фильтра,
1. 2. 3. 4. 5. 6. 7.	Экспериментальная физика высоких энергий Теоретическая физика высоких энергий Экспериментальная нейтронная физика Теоретическая физика низких энергий Математика Ядерная спектроскопия и радиохимия Физика тяжелых ионов		* *	эффективно подавляющего помехи на частоте промышленной сети и ее гармониках. Величина подавления помехи на частоте 50 Гц составляет 49 дБ. Применение описанного фильтра совместно со сверхпроводящим магнитометром позволило реализовать чувстви- тельность прибора к магнитному полю 10 ⁻¹³ T/√Гц в лаборатории с уровнем магнитной помехи ~10 ⁻⁷ Т. Работа выполнена в Лаборатории нейтронной физики ОИЯИ.
8.	Криогеника		l	
9.	Ускорители			Препринт Объединенного института ядерных исследований. Дубна 1982
10.	Автоматизация обработки экспериментальных данных			Bobrakov V.F., Fodel V. P13-82-801 Synchronous Rejection Filter for Biomagnetic Investigations
11.	Вычислительная математика и техника		1	with Squid Application
12.	Химия	}	•	The synchronous rejection filter design is described
13.	Техника физического эксперимента			Its efficiency suppresses noise at the mains frequency and its
14.	Исследования твердых тел и жидкостей ядерными методами	j.		harmonics. The noise suppression for 50 Hz frequency is 49 dB. The use of filter with a superconductive magnetometer in the laboratory with the 10^{-7} T magnetic noise level has
15.	Экспериментальная физика ядерных реакций при низких энергиях	۱ ۲ ۱ - ۱	,	permitted to realize 10^{-13} T/ \sqrt{Hz} magnetic field sensitivity.
16.	Дозиметрия и физика защиты			The investigation has been performed at the Laboratory
17.	Теория конденсированного состояния	1 A 1	x	of Neutron Physics, JINR.
18.	Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники			
19.	Биофизика	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		Preprint of the Joint Institute for Nuclear Research. Dubna 1982
		1. + 		Перевод О.С.Виноградовой.

v

Бобраков В.Ф., Фодель В.

с применением СКВИДа

1

Синхронный сетевой фильтр для биомагнитных исследований

P13-82-801

1

ص