F= 611

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

2397 2-81

18/5-81 P13-81-74

eft

В.М.Головин

СОБИРАНИЕ СВЕТА В БОЛЬШИХ ЖИДКОСТНЫХ СЦИНТИЛЛЯЦИОННЫХ СЧЕТЧИКАХ С ПЛЕНОЧНОЙ -СТЕНКОЙ

ВВЕДЕНИЕ

Целью настоящей работы является расчет пропускания /собирания/ света в спектральном диапазоне чувствительности ФЭУ в большом /длина ~10 м/ цилиндрическом жидкостном сцинтилляционном счетчике с пленочной стенкой.

Счетчик представляет собой трубу, внутри которой содержится цилиндрический "мешок" из пленки, заключающий в себе жидкий сцинтиллятор. Свет, возникающий в сцинтилляторе, распространяется вдоль трубы, испытывая полное внутреннее отражение /ПВО/ на наружной поверхности пленки, которая не имеет оптического контакта с внутренней поверхностью трубы, и выводится далее через световод на фотокатод ФЗУ.

1. ПРОПУСКАНИЕ СВЕТА ЦИЛИНДРИЧЕСКОЙ ЧАСТЬЮ СЧЕТЧИКА

Расчет пропускания света цилиндрической частью счетчика проводился для изотропного источника света, расположенного на оси счетчика, методом численного интегрирования величины $d\Phi/dU$ по углу между осью счетчика и "лучом" света. Величина $\frac{d\Phi}{dU} \Delta U$ представляет собой отношение количества света, распространяющегося в элементе телесного угла $2\pi \sin U\Delta U$ и достигшего координаты ℓ в счетчике, к количеству света, излученному в единицу телесного угла в точке $\ell = 0$, и задается формулой:

$$\frac{d\Phi}{dU} = \sin U \exp\{ \operatorname{int}(\frac{\ell \operatorname{tg} U + 1}{2}) \left[\frac{k_n}{\cos \arcsin(n_{12} \cos U)} + k_0 \right] - \frac{\ell k}{\cos U} \right\} \cdot /1/$$

Здесь $\sin U\Delta U$ - элемент телесного угла; int(...) - целая часть выражения в скобках, задает число отражений "луча" в счетчике; l=L/R - относительная длина цилиндрической части счетчика с длиной L и радиусом R; U - угол между осью счетчика и "лучом"; $n_{12}=n_1/n_2$ - отношение показателей преломления жидкого сцинтиллятора n_1 и материала пленки n_2 ; $k_n = 2\ln(1 - \delta \Phi_n)$ - коэффициент поглощения света в материале пленки, $\delta \Phi_n$ - относительная величина поглощения света одним слоем пленки при нормальном падении, полученная интегрированием в диапазоне спектральной чувствительности сурьмяно-цезиевого фотокатода

Рис.1. Пропускание света цилиндрической частью счетчиков. с соответствующим весом; $k_0 = \ln(1 - \delta \Phi_0)$ – коэффициент потерь света на дефектах поверхности пленки, $\delta \Phi_0$ – относительная величина этих потерь при одном отражении; k = KR – безразмерный показатель поглощения света для сцинтиллятора с длиной поглощения 1/К.

Интегрирование осуществлялось в пределах от 0 до U_{макс}

= $\pi/2 - \arcsin 1/n_1$, rge U_{MaKC},-

угол, дополнительный к углу ПВО на границе сцинтиллятор-воздух, являющийся апертурным углом распространения света в цилиндрической части счетчика /поскольку учет присутствия пленки не влияет на величину U_{макс.} /.

Рассчитывался коэффициент пропускания света цилиндрической частью счетчиков на основе воды со сдвигающей спектр черенковского излучения добавкой при толщине лавсановой пленки 100 и 50 мкм /соответственно кривые 1 и 2 на <u>рис.1</u>/ и длине поглощения 70 м, а также счетчиков на основе уайт-спирита с пленкой толщиной 50 мкм и поглощением 0,04 м⁻¹ /кривая 3 на <u>рис.1</u>/ и с пленкой толщиной 100 мкм и поглощением 0,11 м⁻¹ /кривая 4 на рис.1/; радиус счетчиков равнялся 25 см.

С целью простоты расчета пропускания света цилиндрической частью счетчика предлагается следующее аналитическое выражение:

$$\Phi = \tau \exp\left\{\ell\left[\frac{\mathrm{tg} U_{\mathrm{CP.}}}{2} q\left(\frac{k_{\mathrm{n}}}{\cos \operatorname{arcsin}(n_{\mathrm{p}} \cos U_{\mathrm{CP}})} + k_{0}\right) - \frac{k}{\cos U_{\mathrm{CP.}}}\right]\right\}, \quad /2/$$

Здесь $r = 1 - \cos U_{\text{макс}} = 1 - \sin i \frac{1}{1180} = (n_1 - 1)/n_1$ - относительный телесный угол, соответствующий апертуре ПВО света, излученного изотропно в полусферу; $U_{\text{ср.}}$ - средний угол распространения света относительно оси счетчика, определяемый из уравнения

$$U_{\rm CD}$$
, $\sin U_{\rm CD}$ = τ ,

q - эмпирический параметр, равный 0,85.

Параметр q дает поправку, позволяющую обойтись без численного интегрирования. Остальные обозначения соответствуют обозначениям формулы /1/.

Пропускание в четырех вышеназванных вариантах счетчика рассчитывалось по формуле /2/, результаты этих расчетов сравнивались с результатами расчетов методом численного интегрирования. На основе этого сравнения получено, что формула /2/ обеспечивает по сравнению с численным расчетом по формуле /1/ точность не хуже чем 10% для диапазона $4<\ell<50$, $|k_n+k_0|<0.13$ и k<1.

2. ПРОПУСКАНИЕ СВЕТА РАЗЛИЧНЫМИ СВЕТОВОДАМИ

2.1. Пропускание света параболоторическим фокусирующим конусом

Боковую поверхность параболоторического фокусирующего конуса /ПФК/ получают вращением части параболы вокруг оси, не совпадающей с осью параболы. При определенном выборе параметров ПФК все лучи, входящие в пределах угла $\alpha_{\rm KP}$ в любую точку большого отверстия ПФК, выходят из малого отверстия. Угол $\alpha_{\rm KP}$ определяется отношением диаметра фотокатода /и малого отверстия ПФК/ R_2 к диаметру сцинтиллятора /и большого отверстия ПФК/ R_1 /1/:

$$\sin \alpha_{\rm Kp.} = \frac{\rm R_2}{\rm R_1} \,. \tag{3}$$

Из апертуры ПВО ПФК "перехватывает" относительный телесный угол от 2π, равный:

$$\delta \Omega_{n \pm \kappa} = 1 - \cos \alpha_{\kappa p.} = 1 - \sqrt{1 - (\frac{R_2}{R_1})^2}$$
 (4/

В данном счетчике коэффициент пропускания ПФК определяется следующим отношением:

$$\delta \Phi_{\Pi \buildrel K} = \frac{\delta \Omega_{\Pi \buildrel K}}{\tau} = \frac{1 - \sqrt{1 - (R_2/R_1)^2}}{(n_1 - 1)/n_1} \,. \tag{5/}$$

Зависимость этого коэффициента для $n_1 = 1,333$ /вода/ представлена кривыми 2 на рис.2. Кривая 2 /рис.2/ показывает эту характеристику ПФК для света, излученного изотропно в полусферу на входе ПФК, согласно формуле /4/.

2.2. Пропускание света диффузно отражающим конусом

Расположенная в конусе с апертурным углом U_{макс},обращенном основанием к цилиндрической части счетчика, поверхность "перехватывает" столько же прямого света, сколько и при расположении ее на торце цилиндрической части. Действительно, продолжение стенок цилиндрического счетчика с ПВО не дает вклада в "перехваченный" этой поверхностью прямой свет, поскольку пере-

Рис.2. Пропускание света различными световодами.

отраженный этим продолжением свет распространяется вне названного апертурного угла. Поэтому коэффициент светосбора диффузно отражающим конусом /ДОК/ можно выразить как сумму двух величин: одна обусловлена прямым светом, другая - светом, переотраженным стенками ДОК на выходное окно. Если ввести величину $\tau_{\rm ДK}$, равную отношению количества света, переотраженного ДОК на выходное окно, к количеству света, падающего на стенки ДОК со входа, то с учетом сказанного выше коэффициент пропускания ДОК $\tau_{\rm пок}$

$$\tau_{\text{док}} = \left(\frac{R_2}{R_1}\right)^2 \left[1 + \left(1 - \frac{R_2^2}{R_1^2}\right)\tau_{\text{дK}}\right].$$
 /6/

Для определения $\tau_{\rm дK}$ рассмотрим описанный около конусного цилиндрический диффузно-отражающий световод /ЦДС/. Из общих соображений освещенность, создаваемая ЦДС на выходном торце, меньше, чем у ДОК. Если, далее, ввести для ЦДС величину $\tau_{\rm дII}$, аналогичную величине $\tau_{\rm дK}$ для ДОК, то $\tau_{\rm dK} \geq \tau_{\rm dII}$.

Величина _{7 ли} определяется формулой ⁶

$$\tau_{\rm III} = \frac{\tau_{\rm II} - \tau_{\rm IIP \, SM.}}{1 - \tau_{\rm IIP \, SM.}}.$$
 (7/

Здесь $\tau_{\rm II}$ соответствует полному свету, собираемому на выходное окно; $\tau_{\rm IDSM}$. - прямому свету, достигающему выходного окна. О величине $\tau_{\rm II}$ есть как теоретические, так и экспериментальные данные ^{/2/}. Воспользовавшись последними, получаем зна-

чения $r_{\rm ДU}$ для различных значений параметра $\ell_{\rm c} = L_{\rm c}/R_{1}$, где $L_{\rm c}$ – длина световода. Для величины коэффициента диффузного отражения $\rho = 0.94$ /краска/ имеем соответственно при $\ell_{\rm c} = 0.5$; 1,15; 2,1 $r_{\rm DU} = 0.47$; 0,41; 0,35.

При этом г док выразится в виде

 $r_{\text{ДОК}} \geq \frac{R_2^2}{R_1^2} \left[1 + \left(1 - \frac{R_2^2}{R_1^2}\right) r_{\text{ДU}} \right].$ /8/

Величина $\tau_{\rm ДОК}$, соответствующая равенству в выражении /8/, вычисленная при условии $\rm L_{c}{<}1,5\,R_{1}$, представлена на рис.2 кривыми 3.

2.3. Пропускание света другими световодами

На рис.2 представлен коэффициент пропускания конусного световода с зеркальной поверхностью, имеющей отражательную способность 0,8 для диапазона $R_1 < L_c < 3R_1$ /кривые 4/.

Кривая 5 /рис.2/ иллюстрирует пропускание света конусным световодом с ПВО при условии $L_c > R_1$. Расчет кривых 4 и 5 /<u>рис.2</u>/ произведен с использованием результатов, полученных в работе ^{/1/}. Коэффициент пропускания вычислен для данного счет-чика при $n_1 = 1.333$ /вода/. Для сравнения приводится также кривая 1 /<u>рис.2</u>/, иллюстрирующая светособирание при работе на прямом свете, когда коэффициент собирания равен отношению площади фотокатода к площади поперечного сечения сцинтиллятора.

РЕЗУЛЬТАТЫ

Результаты расчетов описаны в основном выше. Для сравнения с экспериментом^{/3/} методом численного интегрирования рассчитывался коэффициент пропускания света цилиндрической частью счетчика, равной по площади поперечного сечения счетчику, использованному в^{/3/}. Длина поглощения света в жидком сцинтилляторе на основе толуола, согласно данным авторов работы ^{/3/}, была равна 4 м, толщина лавсановой пленки - 50 мкм, длина счетчика -1,3 м, эквивалентный радиус - 5,6 см. <u>Рис.3</u> иллюстрирует хорошее согласие расчета с экспериментом.

Результаты измерений с помощью спектрофотометра поглощения света в материале лавсановой пленки толщиной 100 мкм представлены на <u>рис.4</u>.

В заключение в качестве примера использования полученных результатов найдем долю света, достигающего фотокатода, в частном случае R $_1$ = 25 см, R $_2$ = 7,5 см для счетчика длиной 10 м на

основе воды с пленочной стенкой из лавсана толщиной 100 мкм и для ДОК. В этом случае фотокатода ФЭУ, находящегося в оптическом контакте с заполненным жидкостью ДОК-световодом, достигнет согласно кривым 1 /рис.1/ и 3 /рис.2/ 0,5.0,17.0,12 = 1% света, генерируемого частицей в счетчике на его противоположном конце.

Автор благодарит Л.Я.Жильцову за помощь при измерениях оптических параметров пленок.

ЛИТЕРАТУРА

- 1. Ю.А.Цирлин. Светособирание в сцинтилляционных счетчиках. Атомиздат, М., 1975, с.103,105,108.
- Паргаманик Л.Э., Дайч А.Р., Цирлин Ю.А. Оптика и спектроскопия, 1964, т.17, с.766.
- 3. Балдин Б.Ю. и др. ОИЯИ, Р13-10241, Дубна, 1976.

Рукопись поступила в издательский отдел 2 февраля 1981 года.