

Объединенный институт ядерных исследований дубна

22/11-82

e

P13-81-735

Н.А.Калинина, Д.М.Хазинс

ИССЛЕДОВАНИЕ ГАЗОВОГО УСИЛЕНИЯ В ПРОПОРЦИОНАЛЬНОЙ КАМЕРЕ

Направлено в ПТЭ

В работе^{/1/} при исследовании самогасящегося стримерного режима был получен также довольно обширный материал о величине газового усиления в пропорциональном режиме работы проволочной камеры. В настоящей работе анализируется соответствие этих данных различным аналитическим выражениям для коэффициента газового усиления /КГУ/^{/2-8/}. Газовое усиление в пропорциональных счетчиках исследовалось многими авторами; достаточно полный анализ проблемы и список работ, посвященных этой теме, приведен в обзоре ^{/9/}.

Камера / 1/ представляла собой два плоских катода, расположенных на расстоянии 16 мм друг от друга, посередине между которыми натягивалась анодная проволока. Ионизация в камере создавалась β -источником ${}^{90}{
m Sr}$. Измерения проводились с газовой смесью из аргона, метана, метилаля и этилового спирта /в соотношении 55:36:6:3/. В опыте измерялись зависимости средней величины заряда в импульсе (Q) от напряжения питания камеры. Такие характеристики снимались при различных диаметрах анодной проволоки (d) и давлениях газовой смеси (P). Результаты измерений /без данных по СГС режиму/ приведены на рис.1. В настоящей работе для исследования КГУ была взята часть этих данных, соответствующая области пропорционального усиления. Область пропорционального усиления мы выделяли, ограничивая сверху зарядовые характеристики величиной Q = 1 пК и выделяя тем самым линейные участки у всех зарядовых характеристик на рис.1. При вычислении КГУ по полученным таким образом данным необходимо знать величину заряда, выделяющегося в камере после прохождения eta-частицы (Q_0). Значение этой величины, Q₀=1,97.10⁻⁵ nK,было рассчитано для нашего случая через известные значения энергии образования одной пары ионов и величины ионизационных потерь eta-частиц в газе камеры.

Все имеющиеся в литературе формулы КГУ написаны для пропорционального цилиндрического счетчика. Данные, приведенные в настоящей работе, получены в более сложной геометрии. Однако размножение электронов происходит в области, размеры которой ненамного превышают радиус анодной проволоки, и в этой области геометрию электрического поля можно считать цилиндрической. Поэтому в нашем случае можно использовать формулы, написанные для цилиндрической геометрии поля. Для этого необходимо только определить эффективный диаметр катода г_к счетчика из условия равенства удельных емкостей /емкость на еди-

/1/

Рис.1. Зависимость средней величины заряда в импульсе от напряжения питания: а/ измерения с одной проволокой d = 50 мкм при разных давлениях; б/ измерения при постоянном давлении P = 1 атм с проволоками разных диаметров.

ницу длины анодной проволоки/ этого счетчика и камеры. Для нашего случая I_K=1,02 см.

Среднее значение коэффициента газового усиления G для цилиндрического счетчика записывается через первый коэффициент Таунсенда в виде

$$\ln G = \int a(\mathbf{r}) d\mathbf{r}$$

где r_a - радиус анодной проволоки, r_0 * соответствует точке начала газового усиления.

Как показывают многочисленные измерения /см. $^{\prime 10\prime}$ /, величина $\frac{\alpha}{P}(S)$ есть однозначная функция S, где S=E/P, а E - напряженность электрического поля, P - давление газа.

Заменой переменных $dr \rightarrow dS$ выражение /1/ можно привести к виду

$$\ln \overline{G} = \Pr_{a} S_{a} \int_{0}^{S_{a}} \frac{\alpha}{P}(S) \frac{dS}{S^{2}}, \qquad /2$$

где S_0 и S_a соответствуют точкам r_0 и r_a . Из /2/ получим, что величина

$$F(S_a) = \frac{\ln G}{\Pr_a S_a} = \int_{S_0}^{S_a} \frac{\alpha}{P}(S) \frac{dS}{S^2}$$
 /3/

также является функцией S_a. Представление экспериментальных

* Газовое усиление, очевидно, имеет место и на расстояниях, больших r_0 . Величина r_0 вводится авторами, предлагающими разные аналитические функции для $\frac{\alpha}{P}(S)$, по-видимому, для того, чтобы учесть отличие этих функций от реальных характеристик в области малых значений S.

Рис.2. Результаты измерений в виде функции $F(S_a)$, $\overline{S_a}$ /B см⁻¹. Торр⁻¹ /. Точки линии 1 получены с проволокой d =50 мкм при разных давлениях: A - 2 атм, $\Box - 1,6$ атм, $\bullet - 1,2$ атм, $\diamond - 1,0$ атм, * - 0,8 атм, $\blacksquare - 0,6$ атм, $\bullet - 0,4$ атм. Точки линии 2 получены при давлении P = 1,0 атм с проволоками разных диамет-. ров: $\Diamond - 400$ мкм, + - 200 мкм, O - 100 мкм, $\Delta - 20$ мкм, $\nabla - 10$ мкм.

данных в виде функции $F(S_a)$ применяется в большинстве последних работ^{/11-15},изучающих газовое усиление в пропорциональных счетчиках. Результаты наших измерений в виде функции /3/ представлены на <u>рис.2</u>. Видно, что все экспериментальные точки сгруппировались в две линии, которые были получены в разных сериях измерений. Первая серия /линия 1/ выполнена с одной проволокой / d = 50 мкм/, но при разных давлениях. Вторая серия /линия 2/ проведена при постоянном давлении /P=1 атм/, но с проволоками разных диаметров. Поскольку в первой серии измерений есть точки, полученые при таком же давлении, P = = 1 атм, как и все измерения второй серии, то они должны находиться на линии, соответствующей второй серии измерений.

Рис.3. Аппроксимация результатов аналитическими формулами F_T: 1 - Заставного, 2 - Дайторна, 3 - Ворда, 4 - Вильямса-Сара, 5 - Роуза-Корфа, 6 - Христова, 7 - Эванса. Здесь для представления точек первой серии измерений в виде F(S₂) использовано значение d'=66 мкм.

Наблюдаемый эффект разделения данных на две линии мог произойти по двум причинам: 1/ из-за случайного изменения состава газовой смеси при переходе к измерениям второй серии; 2/ из-за использования неточного значения диаметра проволоки. Для количественного сравнения этих причин мы воспользовались эмпирическими данными о зависимостях напряжения перехода от пропорционального режима усиления к СГС режиму (U_{II}) от состава газа ^{/16}/и диаметра анодной проволоки ^{/1/}. Из этих данных можно сделать вывод, что для совмещения результатов измерений первой и второй серий необходимо либо изменить на десять процентов долю метана в газовой смеси в одной из серий, либо увеличить диаметр проволоки в первой серии с 50 до 66 мкм. Десятипроцентная ошибка в доле метана кажется нам маловероятной. Вторая причина более вероятна, так как первая серия измерений проводилась после длительной работы проволоки в других исследованиях, в результате чего могло возникнуть ее утолщение.

На <u>рис.3</u> приведены все экспериментальные данные в виде Функции $F(S_a)$ где для представления результатов первой серии использовано найденное значение диаметра проволоки: d = 66 мкм. Совокупность точек аппроксимировалась различными аналитическими выражениями КГУ (F_T), которые даны в <u>таблице</u>. Параметры функций F_T были подобраны методом наименьших квадратов. Они приведены в <u>таблице</u>. Графики функций F_T показаны на <u>рис.3</u>. Поскольку нам не были известны абсолютные значения ошибок измерений, то для сравнительной характеристики соответствия наших данных разным формулам F_T использовалась величина

$$K = \chi^2 / \chi^2_{\min} \cdot$$

Здесь χ^2 - сумма квадратов отклонений экспериментальных точек от данной аналитической функции F_{T} . В качестве χ^2_{min} принято значение χ^2 , полученное для формулы Заставного.

В соответствии с рис.3 и таблицей можно заключить, что результаты измерений КГУ в газовой смеси аргон, метан, метилаль и спирт /в соотношении 55:36:6:3/ в области значений $S_a = 70\div600$ В·см⁻¹. Торр⁻¹ одинаково хорошо описываются формулами Дайторна и Заставного, которые предполагают линейную зависимость a/P от S_a . Формула Ворда хорошо согласуется с нашими измерениями до значений $lnS_a \leq 6.2$. Формулы Вильямса-Сара, Роуза-Корфа, Христова и Эванса не подходят для описания КГУ в данной газовой смеси и в исследованном диапазоне значений S_a . Используя параметры функций $F_{\rm T}$, хорошо описывающих данные измерения, мы вычислили зависимости $\frac{\pi}{P}(S_a)$. Результаты, приведенные на <u>рис.4</u>, показывают, что две зависимости $\frac{\pi}{P}(S_a)$, по Заставному и Дайторну, практически можно считать совпадающими. Третья зависимость, по Ворду, дает значения, меньшие относительно первых двух начиная с $S_a \sim 340$ В·см⁻¹. Торр⁻¹.

Естественный интерес вызывает определение коэффициента ударной ионизации прямым методом, т.е. без заранее заданного вида зависимости $\frac{\alpha}{P}(S_a)$, как это сделано в работе^{/17/}. Из формулы /3/ следует, что если существует однозначное соответствие между величинами α/P и S_a /закон подобия/, то зависимость $\frac{\alpha}{P}(S_a)$ может быть определена по формуле

$$\frac{a}{P}(S_a) = \frac{dF(S_a)}{dS_a} \cdot S^2 .$$
 (4/

Из того, что точки, полученные при разных значениях τ_a и P, ложатся на одну линию $F(S_a)$, следует, что возможное нарушение закона подобия в наших измерениях невелико. Предполагая выполнение закона подобия только в пределах отдельных групп из-

Таблица

.

Ы\$ ПП	Авторы	d P	F_{τ}	K	Значения параметров функций, полученных в цанной работе.	
I 	/2/ Заставный	B(\$-\$)	$B_{4} + B \left(ln \frac{S_{a}}{S_{o}} + \frac{S_{o}}{S_{a}} - 1 \right)$	I,0	$B = -0,033 B^{-1}$ $B_{f} = 0,0189 B^{-1}$ $S_{o} = 3,58 B \cdot c M^{-1} \cdot TOPP^{-1}$	
2	Дайторн /3/	D S	$D(ln S_a - ln S_o)$	I,02	D = 0,0185 B' S_= 51,11 B·CM'· TOPP'	
3	Ворц / 4/	J.e ³ *	$\frac{2\mathcal{I}}{H^{2}}\left[\left(\frac{H}{S^{\frac{1}{2}}}+1\right)\cdot e^{\frac{H}{S_{a}}t}-\left(\frac{H}{S_{a}^{\frac{1}{2}}}+1\right)\cdot e^{\frac{H}{S_{a}}t}\right]$	I,27	H = 25,6 B ² . cm ² . ropp ⁻¹ J = 23,5 cm ['] . ropp ['] $S_0 = 46,2$ B cm ['] . ropp [']	
4	/5/ Вильямс-Сара	A∙e ³	$\frac{A}{B}\left(e^{-\frac{B}{5a}}-e^{-\frac{B}{5a}}\right)$	I,8	$A = 8.3 \text{ cm}' \cdot \text{ ropp}'$	
					$B = 151,4 \text{ B} \cdot \text{cm} \cdot \text{ropp}'$ $S_{b} = 0 \text{ B} \cdot \text{cm}' \text{ ropp}''$	
5	/6/ Роуз-Корф	2C, 54	$C_{2}\left(\frac{1}{S_{o}^{2}}-\frac{1}{S_{a}^{4}}\right)$	7,6	$C_{4} = 0,422 \text{ B}^{\frac{1}{2}} \text{ cm}^{\frac{1}{2}} \text{ topp}^{\frac{1}{2}}$ $S_{0} = 58,5 \text{ B} \cdot \text{cm}^{-1} \text{ topp}^{-1}$	
6	/7/ Христов	С	$C\left(\frac{4}{S_o}-\frac{4}{S_u}\right)$	21,6	C = 0,0362 см ⁴ торр ⁴ S _c = 0,016 В см ⁴ торр ⁴	
7	/8/ Эванс	R (S-S_) ²	$R \cdot S_a + 2R \cdot S_o \ln \frac{S_o}{S_a} - \frac{R \cdot S_o^2}{S_a}$	36,5	$R = 0, II \cdot IO$ B $c_{M} \cdot Topp$ $S = 0, I \cdot IO$ B c_{M} $c_{T} \cdot Topp$	

6

<u>Рис.4.</u> Зависимости $\frac{a}{p}(S_a)$, вычисленные по формулам: 1 – Заставного, 2 – Дайторна, 3 – Ворда. + – значения $\frac{a}{p}(S_a)$, определенные по формуле /4/.

мерений с определенными значениями r_a и P, мы определили величины $\frac{a}{P}(S_a)$ по формуле /4/. Из рис. 4 видно, что полученные таким образом значения $\frac{a}{P}(S_a)$ систематически смещены относительно аналогичных значений $\frac{a}{P}(S_a)$, найденных по формулам Заставного и Дайторна, которые предполагают выполнение закона подобия для всего интервала измерений. Вероятно, это смещение есть результат все-таки имеющегося отклонения от закона подобия в наших данных.

В заключение авторы выражают благодарность Г.Д.Алексееву за участие в измерениях,Д.Б.Понтекорво и В.Х.Додохову за полезные обсуждения.

ЛИТЕРАТУРА

- 1. Алексеев Г.Д., Хазинс Д.М. ОИЯИ, Р13-80-653, Дубна, 1980.
- 2. Zastawny A. J.Sci.Instr., 1966, 43, p.179.
- 3. Diethorn W.A. NY0-6628, 1956.
- 4. Word A.L. Phys.Rev., 1958, 112, p.1852.
- Williams A., Sara R.J. Int.J.Appl.Rad.lsotopes, 1962, 13, p.229.

- 6. Rose M.E., Korff S.S. Phys.Rev., 1941, 59, p.850.
- 7. Khristov L.G. Dokl.Bulg.Akad.Nauk, 1947, 10, p.453.
- Rice-Evans P. Spark Streamer, Proportional and Drift Chambers. Richelien Press, London, 1974, p.453.
- 9. Bambynek W. Nucl.Instr. and Meth., 1973, 112, p.103.
- 10. Мик Д., Крегс Д. Электрический пробой в газах. ИЛ, М., 1960, с.78.
- 11. Заставный А., Мизерачик Ю. Nukleonika, 1966, 11, р.685.
- 12. Charles M.W. J.Phys.E: Scient.Instr., 1972, 5, p.95.
- 13. Zastawny A. J.Sci.Instr., 1967, 44, p.395.
- 14. Kiser R. Appl.Sci.Res., 1960, sect.B, 8, p.183.
- 15. Hendricks R.W. Nucl.Instr. and Meth., 1972, 102, p.309.
- 16. Alekseev G.D. et al. Nucl.Instr. and Meth., 1980, 177, p.385.
- Duuren K., Sizoo G.L. Appl.Sci.Res., 1959, sect.B, 7, p.379.

Рукопись поступила в издательский отдел 23 ноября 1981 года.