

СООБЩЕНИЯ Объединенного института ядерных исследований

дубна

6-11/2-81

9/2-81 P13-80-707

В.М.Абазов, О.В.Савченко, С.Н.Тихонов

ВОЗМОЖНОСТИ ПОЛУЧЕНИЯ ИНТЕНСИВНЫХ ПУЧКОВ СЕПАРИРОВАННЫХ МЕЗОНОВ НА ФАЗОТРОНЕ С ПРОСТРАНСТВЕННОЙ ВАРИАЦИЕЙ МАГНИТНОГО ПОЛЯ

§1. ВВЕДЕНИЕ

Развитие физики элементарных частиц и постоянно возникающие новые направления прикладных задач требуют для своего решения все большей интенсивности мезонных пучков и плотности их остановок, в частности, получения интенсивных пучков сепарированных пи- и мю-мезонов. Для получения таких пучков в настоящее время наиболее широко используются мю-каналы, принцип действия которых основан на особенностях кинематики $\pi \rightarrow \mu$ распада на лету /см., напр., $^{/1-3/}$ /. Достоинством таких каналов является возможность формирования чистых пучков мю-мезонов при почти 100% продольной поляризации.

Однако при длине распадной части мю-канала около 10 м и импульсном разрешении выходного анализатора Δр/р ≈ 10% эффективность такого канала, т.е. доля сепарированных мю-мезонов, соответствующих распаду назад в системе центра масс, составляет всего 3~5% от числа пи-мезонов на входе пролетной части канала.

Известны альтернативные способы получения мю-мезонов из так называемого "мезонного облака" /4/. являющегося интенсивным источником образования мю-мезонов за счет распада пи-мезонов на лету вблизи мезонообразующей мишени. Любой пучок пимезонов от внутренней или внешней мишени ускорителя после транспортировки к детектирующей аппаратуре с помощью обычного канала из отклоняющих магнитов и квадрупольных линз содержит в своем составе на выходе канала примеси мю-мезонов и электронов с тем же самым импульсом, что и пи-мезоны /1/ Доля мюмезонов в таком пучке по данным ряда работ колеблется в зависимости от энергии частиц в пределах от 3 до 9% / 1.5.6/. Это позволяет надеяться на получение при достаточно эффективном методе сепарирования более интенсивных пучков мю-мезонов при меньшей длине и, следовательно, стоимости канала. Следует, однако, иметь в виду, что поляризация мю-мезонов из "мезонного облака" существенно меньше и не превосходит 20% /5/.

Существуют различные способы получения мю-мезонов из "мезонного облака". В работе /4/ расчетным путем было показано, что смещением мезонообразующей мишени перпендикулярно оси канала и специальной настройкой элементов канала можно получить пучки мю-мезонов, сравнимые по интенсивности с пучками на мюканалах. Однако вопрос о чистоте пучка при таком способе получения в этой работе не был решен до конца. Известные методы разделения частиц с одинаковым импульсом по массам с помощью электромагнитных сепараторов или промежуточного замедлителя с последующим повторным магнитным анализом /7/ не являются достаточно эффективными по сравнению с мюканалами. Действительно, размещение электромагнитного сепаратора длиной в несколько метров между квадрупольными линзами обычного канала сильно уменьшает аксептанс по телесному углу такой системы, а прохождение пучка через замедлитель заметно увеличивает его эмиттанс.

Уменьшение интенсивности пучка после подтормаживания можно охарактеризовать приближенным выражением

$$\eta = \frac{I}{I_0} \approx \frac{\Delta \Omega}{\Delta \Omega_k + \Delta \Omega} ,$$

где I – интенсивность пучка на выходе из канала; I₀ – интенсивность пучка перед замедлителем; $\Delta\Omega$ – аксептанс канала по телесному углу /для обычного канала из отклоняющих магнитов и квадрупольных линз $\Delta\Omega$ порядка 10^{-2} ср/; $\Delta\Omega_k$ – увеличение фазового объема пучка за счет многократного кулоновского рассеяния, $\Delta\Omega_k = \pi < \theta^2 >_k$, где $< \theta^2 >_k$ – среднеквадратичный угол многократного кулоновского рассеяния. Для типичной ситуации, когда толщина замедлителя составляет примерно половину перво-начального пробега пучка частиц, – $\sqrt{<\theta^2} >_k = 5^\circ$ и $\Delta\Omega_k \approx 3 \cdot 10^{-2}$. В этом случае $\eta = 0.25 << 1$, и эффективность такого метода сепарации сильно уступает мю-каналу.

Однако ситуация изменяется коренным образом, если для получения мезонных пучков использовать широкоугольные фокусирующие устройства с аксептансом по телесному углу около одного стерадиана. В этом случае $\eta = 1.0 / 1.0 + 3 \cdot 10^{-2} \approx 0.97 \simeq 1$, и потери при сепарации становятся пренебрежимо малыми. Кроме того, при использовании методов широкоугольной фокусировки одновременно достигается увеличение абсолютной интенсивности мю-мезонного пучка /примерно на два порядка/ при одинаковой интенсивности протонного пучка, падающего на мезонообразующую мишень.

Впервые это обстоятельство было отмечено в работе /8/ для широкоугольных фокусирующих систем с тороидальным магнитным полем и затем уточнялось в ряде последующих работ /6,9/ для неоднородных аксиально-симметричных магнитных полей. В последнее время появились аналогичные предложения получения интенсивных пучков мю-мезонов с помощью широкоугольных аксиально-симметричных систем, образованных сверхпроводящими катушками /10,11/

Следует отметить, что широкоугольные фокусирующие системы с промежуточным замедлителем могут быть также применены и для сепарации мю-плюс мезонных пучков с импульсом около 25 МэВ/с, образованных в поверхностном слое мезонообразующей мишени /5/.

Целью настоящей работы явилось проведение детальных расчетов различных вариантов широкоугольных фокусирующих систем с неоднородным аксиально-симметричным магнитным полем и рас~ смотрение возможностей получения сепарированных пучков пии мю-мезонов на конкретной системе, предназначенной для формирования медицинского лучка отрицательных пи-мезонов на фазотроне с вариацией магнитного поля /установка "Ф"//12/.

§2. МЕТОДИКА ВЫЧИСЛЕНИЙ И ПРИМЕРЫ РАСЧЕТА РАЗЛИЧНЫХ ВАРИАНТОВ ШИРОКОУГОЛЬНЫХ ФОКУСИРУЮЩИХ СИСТЕМ

Для расчета траекторий заряженных частиц в аксиально-симметричных магнитных полях и определения параметров фокусирующих систем были составлены программы на языке ФОРТРАН для малой ЭВМ НР., В основу этих программ положены ранее написанные программы ^{/9/} со следующими изменениями и дополнениями:

1. Расчет значений производных распределения магнитного поля на оси симметрии численным методом был заменен вычислением по аналитическим формулам ба, 8, 10, 12 и 13 из работы /9/. Полученная при этом точность расчета траекторий частиц позволила увеличить шаг интегрирования в два раза и тем самым повысить скорость счета.

2. Вычисление траекторий частиц производилось методом Штермера /вместо ранее использованного метода Рунге/, что дополнительно позволило повысить скорость счета в 2-3 раза.

3. Для вычисления траекторий точечного источника, расположенного на оси симметрии магнитного поля, были использованы уравнения движения в цилиндрической системе координат. Это позволило получить требуемую точность расчетов при меньшем в два раза количестве шагов интегрирования, а также значительно /в четыре раза/ повысить скорость вычислений.

Для удобства производимых расчетов все программы видоизменены таким образом, чтобы была обеспечена возможность работы в режиме диалога оператора с ЭВМ и получения необходимой информации в наглядной форме. С этой целью написаны следующие вспомогательные программы:

1. Программа расчета семейства кривых, отображающих зависимость п-го фокусного расстояния от угла вылета частиц при различных импульсах этих частиц.

2. Программа, позволяющая получать изображение магнитной линзы и всех ее элементов на графопостроителе, быстро вносить изменения в расположение катушек и железных масс заданной конфигурации, менять направление и силу тока в катушках и сопоставлять со всеми этими изменениями полученные траектории заряженных частиц.

P=55+/-1. MEV/C TETA= (36, 46) T-ANGLE=, 72 Z1=150 CM Z2=380 CM

<u>Рис.1.</u> Вариант широкоугольной линзы для получения пучков сепарированных пи- и мо-мезонов. Первоначальный импульс мезонов – 55 МэВ/с. Допустимый разброс по импульсу – +1 МэВ/с. Интервал углов захвата – $\theta = /36^{\circ} - 46^{\circ}/$. Аксептанс по телесному углу – 0,72 ср. Положение первого фокуса – 190 см, второго – 380 см. Цифры на катушках – значение максимального тока в амперах. Проценты – распределение тока в катушках. Косой штриховкой изображено распределение железных масс. Остальные пояснения в тексте.

3. Программа для учета влияния размеров мезонообразующей мишени и грубой имитации эффекта подтормаживания заряженных частиц.

С использованием разработанной методики вычислений было рассчитано свыше 40 различных вариантов широкоугольных фокусирующих систем, отличающихся распределением тока в катушках и конфигурацией окружающих эти катушки железных масс. Из этого количества 8 вариантов допускают путем перераспределения тока в катушках и замены внутреннего сердечника линзы возможность получения как медицинских пучков отрицательных пи-мезонов с импульсом до 200 МэВ/с, так и сепарированных пучков пи- и мю-мезонов с импульсом от 20 до 60 МэВ/с. Два примера таких систем из этих 8 вариантов показаны на <u>рис.1</u> и <u>3</u>. Особенностью всех этих вариантов является возможность конечной фокусировки заряженных частиц за пределами железного ярма линзы, где магнитное поле не превышает 5-10 Э.

Рис.2. Распределение аксиальной компоненты магнитного поля на оси линзы, изображенной на рис.1. По оси абсцисс – расстояние в см. По оси ординат – значение аксиальной компоненты в кГс.

Как видно из <u>рис.1</u>, поглотитель из полиэтилена толщиной около 1 см, помещенный в первом фокусе линзы, полностью тормозит все пи-мезоны, уменьшает при этом импульс мю-мезонов всего на 15-20% и практически не изменяет импульса электронов. Поэтому вторая часть линзы, настроенная на импульс заторможенных мю-мезонов, собирает их во втором фокусе, отсекая почти полностью все электроны с незначительно измененным импульсом. Подбором ширины кольцевых диафрагм, расположенных в области промежуточного кольцевого фокуса, в каждой части линзы можно менять импульсный разброс $\Delta p/p$ сепарированных частиц от 1 до 6% в зависимости от размеров мезонообразующей мишени.

Аналогичным образом, изменяя только толщину поглотителя в первом фокусе линзы, можно настроить всю такую фокусирующую систему на получение сепарированных пи-мезонов, уменьшив при торможении их импульс на 10-15% по сравнению с импульсом мюмезонов. Таким образом, варианты широкоугольной фокусирующей линзы, изображенной на <u>рис.1 и 3</u>, позволяют осуществить как получение пучка отрицательных пи-мезонов для медицинских целей с импульсом до 183 МэВ/с и пробегом 23 см H_2O , так и получение сепарированных пучков пи- и мю-мезонов с импульсом до 46 МэВ/с. При этом аксептанс по телесному углу составляет 0,35 и 0,72 ср соответственно в первом и втором случаях.

\$3. ПАРАМЕТРЫ СЕПАРИРОВАННЫХ И НЕСЕПАРИРОВАННЫХ МЕЗОННЫХ ПУЧКОВ

Для вариантов фокусирующих систем, изображенных на рис.1 и 3, на основании формул 22 и 23 из работы /9/ были выполнены расчеты полных потоков и плотностей остановок пучков сепарированных и несепарированных мезонов. В этих вычислениях принимались во внимание поправки на ослабление первичных протонов в толстой мезонообразующей мишени /5 см W/~/20%/, влияние толщины мишени на сечение образования пи-мезонов /от 5 до 40%/, увеличение фазового объема пучка в импульсном пространстве при его подтормаживании /до 50%/, уменьшение телесного угла за счет потерь на винтовых лопастях для разделения частиц по знаку заряда /15%/. Сечение образования пи-мезонов для энергии налетающих протонов 730 МэВ бралось из работы/18/.Доля мю-мезонов из "мезонного облака" в пучке пи-мезонов принималась равной 6% /5/. Сечение образования мю-плюс мезонов из поверхностного слоя мезонообразующей мишени также бралось из работы^{/5/}.

Результаты проведенных вычислений из расчета на 10 мкА $/6,25\cdot10^{13}\,\mathrm{c}^{-1}$ / выведенного протонного пучка приведены для сепарированных и несепарированных мезонов соответственно в табл.1 и 2. Там же для сравнения приведены данные для пуч-ков мезонов, получаемых на обычных мю-каналах. При этом были использованы расчеты интенсивностей пучков сепарированных и несепарированных мезонов, полученные в работах /2.3/, приведенные к току протонного пучка 10 мкА и толщине бериллиевой мишени 10 см.

Как следует из этих расчетных данных, применение широкоугольных фокусирующих линз позволяет получить при одинаковых токах протонного пучка интенсивности сепарированных мю-мезонов на один-два порядка большие, чем в мю-каналах. При этом плотность остановок при использовании широкоугольных линз возрастает на два-три порядка. Для получения пучков несепарированных пи-мезонов использование широкоугольных фокусирующих линз обеспечивает возможность увеличения полных интенсивностей и плотностей остановок на два порядка по сравнению с обычными мю-каналами.

\$4. ОЦЕНКА НЕЙТРОННОГО ФОНА В ОБЛАСТИ ФОКУСА ШИРОКОУГОЛЬНОЙ МЕЗОННОЙ ЛИНЗЫ

В связи с конструктивными особенностями мезонной линзы расстояние от мишени до конечного фокуса не может быть сделано более 4 м. Поэтому вопросы защиты облучаемых объектов от нейтронного фона в области фокуса линзы приобретают первостепенное значение.

Таблица 1

Параметры пучков сепарированных мезонов при интенсивности протонного пучка 10 мкА

Тип фокусировки	Широко аксепт му угл	угольная ансом по у 0,7 ст.	лянза с Телесно-	Miro-	канад	
Тип пучке	T.	из "ме- вонного облака"	44 + ИЗ ПО- Верхно- Стного Слоя Мишени		щ ⁻	
Толщина мишени	5 см вольфрама			IO см бериллия		
Импульс частип, <u>Ма</u> В/с	. 46	46	21,5	86	115	150
△ p/p %	6	6	6	I4	12,6	9,6
Энергия, МаВ	7,4	9,4	2,15	30	50	76
Пробег частиц в г/см ² в Си	0,53	1,05	0,07	7,0 .	21,3	30
Толщена слоя остановок час- тец в г/см ² в Си	0,11	0,21	0,014	2,9	5,6	6,9
Полная внтен- сивность пуч- ка, с-I	2,8·10 ⁷	1,0.107	I,7·I0 ⁷	2,1·10 ⁵	5,6·10 ⁵	7.105
Inothects oc- tehosok b I r Cu fipe induga- de nonepethoro cevening invike $S = 80 \text{ cm}^2$, c^{-1}	3,6·10 ⁶	7·10 ⁵	1,5·10 ⁷	0,8·10 ³	1,3·10 ³	1,3·IO ³
Пояная внтен- сивность до реконструкции ускорителя, с ⁻¹				2,2·10 ⁴	1,3·10 ⁵	1,9·10 ⁵

Точный расчет потоков нейтронов, просачивающихся через апертуру линзы в винтообразных полостях центрального защитного сердечника, вряд ли возможен в настоящее время по причине крайней сложности и большого объема необходимых вычислений

Таблица 2

Параметры	пучк	ов несепар	ированны	лх	мезонов	при
интенсивно	ости	протонного	пучка 🛛	0	мкА	

Ш Твп фокусвровка а м	ирокоугольная ксептансом по у углу 0,35	И ЛЕНЗВ С О Телесно- СТ.	Мю-канал		
ТИП ПУЧКА П	медицински	NG DYAKN	Π		
Толщина мишени	5 см вольфр	ama	10 см бериллия		
Импульс чэстац, МэВ/с	97	184	200		
∆p/p %	6	6	6		
Энергия частип, МаВ	30	91	104		
Пробег частва в см Н ₂ 0	3,9	23	29		
Толщина скол остано- вок частки в см Н ₂ О	0,7	3,5	4,0		
Полная интенсивность с ⁻¹	1,6·10 ⁸	3,3·10 ⁸	3,2·10 ⁶		
Плотность остановок в см ³ H ₂ 0 при площал поперечного сечения пучка <u>S = 90</u> см ² , с ⁻¹	≖ 2,7·10 ⁶	1,2.10 ₆	1,0·10 ⁴		
Мощность дозн, рад/мин	135	60	0,5		

на ЭВМ. Можно, однако, надеяться получить достаточно достоверные оценки нейтронного фона на основе приближенных вычислений, считая, что все вещество центрального защитного сердечника линзы равномерно распределено по всей области ее апертуры.

В этом случае усредненная толщина защиты в г/см2 опреде-ляется выражением: $q \approx P/S$, где P - вес сердечника в г, а

S - площадь апертуры линзы в см2.

Спектр нейтронов с энергией свыше 20 МэВ, вылетающих под углом 90° к оси протонного пучка, имеет вид/14/:

 $dn/dE_n \simeq N_0 e^{-0.025E_n}$

где E_n - энергия нейтронов в МэВ, а

$$N_0 = 1,6.10^{-3}$$
 нейтронов с $E_n \ge 20$ МэВ ср. МэВ. ядерное взаимодействие

определено по данным работы/15/.

Тогда плотность потока нейтронов с Е_л≥20 МэВ в фокусе линзы можно описать следующим выражением:

 $\frac{\mathrm{d}N}{\mathrm{d}S} = \frac{\mathrm{I}_{\mathrm{p}} \cdot \mathbf{f} \cdot \mathrm{N}_{0}}{\mathrm{R}^{2}} \int_{20}^{\infty} \mathrm{e}^{-0.025\mathrm{E}_{\mathrm{n}}} \mathrm{e}^{-\frac{\mathrm{q}}{\lambda(\mathrm{E}_{\mathrm{n}})}} \mathrm{d}\mathrm{E}_{\mathrm{n}},$

где R- расстояние от мишени до фокуса; $\lambda(E_n) = 1/\Sigma(E_n)$ – длина релаксации нейтронов с энергией E_n ; $\Sigma(E_n)$ – макроскопическое сечение выведения нейтронов при энергии E_n ; f = $(1 - e^{-\sigma n}) \simeq 0.6$ – вероятность налетающему протону испытать ядерное взаимодействие в вольфрамовой мишени толщиной 5 см; I – интенсивность падающего протонного пучка – 10 мкА или 6,25·10¹³ с⁻¹. Значение $\lambda(E_n)$ и $\Sigma(E_n)$ в интервале энергий нейтронов от 20 до 600 МэВ взято из таблиц 4,2 и 4,3 работы/16/

Для вариантов линз, изображенных на <u>рис.1</u> и <u>3</u>, $q \simeq 1900$ г/см² Cu. Это даже несколько больше, чем толщина защиты из самих элементов линзы /катушек и железного ярма/, равная 1600 г/см² Поэтому для оценки нейтронного фона толщина усредненной защиты принималась равной наименьшему значению, т.е. $q \simeq$ =1600 г/см² Cu.

В этом случае $dN/dS|_{q=1600} \approx 55$ нейтронов/см² с, в то время как при отсутствии защиты $dN/dS|_{q=0} \approx 10^7$ нейтронов/см² с, т.е. фактор ослабления потока нейтронов в защите составляет 1,8.105.

Достоверность такого подхода к оценке нейтронного фона можно проверить на результатах экспериментального определения нейтронного фона в фокусе пи-мезонной линзы, созданной ранее на синхроциклотроне Лаборатории ядерных проблем ОИЯИ для проведения медико-биологических исследований /6,17/ В этой линзе $q \simeq 270$ г/см² Cu, f = 0,63 и I_p = 0,15 мкА $\simeq 10^{12}$ с⁻¹. Тогда $dN/dS|_{q \simeq 0} \simeq 5,2\cdot10^5$ нейтр./см² с, фактор ослабления при q = = 270 г/см² равен 14 и $dN/dS|_{q=270} \simeq 3,7\cdot10^4$ нейтр./см² с. По измерениям работы/17/плотность потока нейтронов с энергией больше 20 МэВ составляет $dN/dS|_{q=270} \simeq 6,7\cdot10^4$ нейтр./см² с, что можно считать удовлетворительно совпадающим с расчетным значением 3,7·10⁴, так как в эксперименте, помимо нейтронов от мишени, детектор мог регистрировать заметную долю нейтронов, возникающих при захвате отрицательных пи-мезонов атомными ядрами, входящими в материал нейтронного детектора.

Таким образом конструкция широкоугольной мезонной линзы, изображенной на <u>рис.1</u> и <u>3</u>, обеспечит при увеличении интенсивности протонного пучка в 60 раз снижение нейтронного фона

Рис.3. Вариант широкоугольной линзы для получения пучков несепарированных мезонов. Импульс мезона – 183,6 МэВ/с. Интервал углов захвата – θ = /10,45° – 21,77°/. Аксептанс по телесному углу – 0,344 ср. Положение фокуса пучка – 405 см. Радиус пучка в фокусе линзы – R = 3,14 см. Остальные обозначения аналогичны указанным на рис.1.

<u>Рис.4</u>. Распределение аксиальной компоненты магнитного поля на оси линзы, изображенной на рис.3. Обозначения аналогичны указанным на рис.2.

примерно на три порядка /до величины ~10² нейтр./см² с/. Это сделает возможным проведение на мезонных пучках широкоугольной линзы не только медико-биологических исследований, где этот порог гораздо выше, но и ряда физических экспериментов, для которых допустимый уровень фона близок к величине, существовавшей до реконструкции синхроциклотрона в зале экспериментальных установок здания ускорителя.

В заключение авторы выражают благодарность члену-корреспонденту АН СССР В.П.Джелепову за постоянный интерес к работе и плодотворные обсуждения.

ЛИТЕРАТУРА

- 1. Роганов В.С. ОИЯИ, Б1-9-4707, Дубна, 1969.
- 2. Абросимов Н.К. и др. Препринт ЛИЯФ-390, Л., 1978.
- 3. Абросимов Н.К. и др. Препринт ЛИЯФ-461, Л., 1979.
- 4. Tanable K. Particle Accel., 1972, 2, p.211.
- 5. Van Dyck O.B. et al. IEEE Trans. on Nucl.Sci., 1979, v.NS-26, No.3, p.3197.
- 6. Абазов В.М. и др. ОИЯИ, Р13-8079, Дубна, 1974.
- 7. Бенфорд А. Транспортировка пучков заряженных частиц. Атомиздат, М., 1969, с.139,147.
- 8. Савченко О.В. ОИЯИ, Б1-13-6255, Дубна, 1971.
- 9. Абазов В.М., Савченко О.В. ОИЯИ, Б1-13-9782, Дубна, 1976.
- Lobb B.E. IEEE Trans. on Nucl.Sci., 1979, v.NS-26, No.2, p.2020.
- 11. Lobb B.E. IEEE Trans. on Nucl.Sci., 1979, v.NS-26, No.3, p.3194.
- 12. Глазов А.А. и др. ОИЯИ, 9-3951, Дубна, 1968.
- 13. Cochran D.R. et al. Phys.Rev., 1972, D6, pp.3085-3116.
- 14. Барашенков В.С., Тонеев В.Д. Взаимодействие высокоэнергетических частиц и атомных ядер с ядрами. Атомиздат, М., 1972, с. 370.
- 15. Коньшин В.А. и др. ЯФ, 1966, 4, с.337.
- Бродер Д.Л. и др. Бетон в защите ядерных установок. Атомиздат, М., 1966, с.104,105.
- 17. Алейников В.Е. и др. ОИЯИ, Р16-9123, Дубна, 1975.

Рукопись поступила в издательский отдел 3 ноября 1980 года.