

Объединенный институт ядерных исследований дубна

607

9/2-81 P13-80-653

Г.Д.Алексеев, Д.М.Хазинс

ВЛИЯНИЕ ТОЛЩИНЫ АНОДНОЙ ПРОВОЛОКИ И ДАВЛЕНИЯ РАБОЧЕГО ГАЗА НА ХАРАКТЕРИСТИКИ САМОГАСЯЩЕГОСЯ СТРИМЕРНОГО РЕЖИМА РАБОТЫ ПРОВОЛОЧНОЙ КАМЕРЫ

Направлено в ЖТФ

В предыдущих работах ^{/1,2/} было показано, что самогасящийся стримерный /СГС/ режим работы проволочной камеры в определенных условиях имеет стабильный характер и обнаруживает свое существование при значительных изменениях состава газовой смеси. В данной работе исследуется влияние давления газа (Р) и диаметра анодной проволоки (d) на характеристики СГС режима.

Камера в этих измерениях представляла собой две катодные плоскости из медной фольги толщиной 30 мкм, расположенные на расстоянии 16 мм друг от друга, посередине между которыми натягивалась одна анодная проволока. Камера облучалась β -источником ⁹⁰ Sr. Во всех измерениях использовалась газовая смесь из аргона, метана, метилаля и этилового спирта в соотношении 55:36:6:3, которая была определена в работе ^{/2/} как наиболее удобная для практических целей.

Влияние давления на характеристики СГС режима изучалось при толщине анодной проволоки d = 50 мкм, а их зависимость от толщины анодной проволоки – при атмосферном давлении P = 1 атм. Полученные данные приведены в таблице и на рис.1-4.

Основной вывод настоящей работы состоит в том, что СГС режим наблюдается во всем измеренном диапазоне величин Р и d. Однако не везде он проявляется достаточно отчетливо, и его характеристики довольно существенно меняются. Так, например. мы не смогли заметить момента перехода от пропорционального к СГС режиму при d = 10 мкм, который обычно проявляет себя резким скачком в амплитуде сигнала с камеры. Единственное свидетельство в пользу существования СГС режима с такой проволокой состоит в очень малой длительности сигнала / t = 25 нс на полувысоте/, в то время как в пропорциональном режиме она составляет t ~ 200 нс. При d = 20 мкм хотя СГС режим наблюдался отчетливо, но плато в характеристике одиночного счета обнаружено не было /рис.1/. К тому же при малых диаметрах анодной проволоки была зарегистрирована высокая интенсивность шумовых импульсов. Таким образом, характеристики СГС режима для наполненных указанной выше газовой смесью при атмосферном давлении камер с тонкой анодной проволокой /d < 50 мкм/ можно считать неудовлетворительными для практического применения.

Широкое плато счетной характеристики / ≥ 1 кВ/ было получено при диаметрах анодной проволоки d = 50, 100 и 200 мкм. При d = 400 мкм рабочая область камеры ограничивается искровыми пробоями при U = 6,3 кВ. Как видно из рис.1, плато счетной

одиночного счета камеры

приведенного к единице длины анодной про-

o Рис.1. Счетные характеристики камеры в СГС режиме при разных давлениях рабочего газа /а/ и диаметрах анодной проволоки /б/. Толстой линией представлены графики эффективности (є), тонкой - скорости

Рис.2. Влияние давления /а/ и диаметра анодной проволоки /б/ на длительность импульса на полувысоте (t) и величину мертвой зоны (/).

характеристики зависит от давления и растет с его увеличением. Исследованная область давлений / Р \leq 2 атм./ была огражичена техническими причинами,

На рис.2 представлены графики длительности импульса с камеры на полувысоте (t) и величины мертвой зоны (¿). Видно, что с ростом давления величины t и ζ резко уменьшаются, причем в изученной области падение величины мертвой зоны опережает рост давления /произведение P. ζ уменьшается с увеличением P/. Явной зависимости этих параметров от диаметра анодной проволоки не наблюдается. Большие зна ения ζ, полученные при d ∞10 и 20 мкм, возможно, объясняются образованием повторных разрядов после прохождения частицы, которые вносят дополнительную неэффективность в работу камеры. О наличии повторных разрядов свидетельствует повышенная скорость одиночного счета при малых d.

(n),

волоки.

Рис.3. Амплитудные спектры сигналов в СГС режиме при Р≈0,4 атм и d = 50 мкм. Цена 1 канала - 13,3 пКл.

Переходя к описанию амплитудных характеристик, необходимо отметить, что ранее мы /1/, а также другие авторы /3.4/ замечали скачок в поведении амплитуды сигнала с ростом напряжения питания в СГС режиме. В данных измерениях в некоторых случаях наблюдалась гораздо более сложная структура амплитудного спектра СГС разряда. Наиболее яркий пример приведен на рис.3, где одновременно присутствуют 4 эквидистантно расположенных пика. Довольно естественно это явление можно объяснить, если предположить, что при прохождении частицы через камеру образуется не один стример, а несколько, причем их число растет с напряжением. При наблюдении на осциллографе заметных изменений в форме импульса с ростом напряжения в СГС режиме не замечалось, что говорит об одновремен-

ности образования стримеров в пределах нескольких наносекунд. Можно было бы пытаться объяснить появление нескольких стримеров угловым разбросом β -частиц, пересекающих камеру. Однако в предыдущих работах /1,8,4/ двоение пиков амплитуд было зарегистрировано при облучении камеры рентгеновскими фотонами, ионизующими газ локально. Таким образом, размножение стримеров вызывается внутренними процессами развития разряда.

На <u>рис.4</u> представлены зависимости средней величины заряда в импульсе от напряжения питания камеры /толстые линии/. Тонкими линиями обозначено поведение максимумов в амплитудных спектрах. Из сопоставления этих данных следует, что амплитуда сигнала с камеры в СГС режиме растет главным образом за счет увеличения числа стримеров и лишь в незначительной степени за счет роста величины каждого из них. С этим выводом хорошо согласуется увеличение ширины светящейся области разряда с ростом напряжения при неизменной длине стримера, которое наблюдается на фотографиях, приведенных в работе /1/.

Настоящие исследования еще раз подтверждают магическую роль величины критического заряда Q $_{\Pi 1}$, при котором происходит переход таунсендовской лавины в стример. В работе $^{/2/}$ отмечалось, что она соответствует условию Ретера для лавинно-стример-

<u>Рис.4</u>. Зарядовые характеристики камеры. Толстые линии представляют зависимость средней величины заряда в импульсе от напряжения питания камеры (U), тонкими линиями обозначено поведение максимумов в амплитудных спектрах. Стрелки указывают напряжения, при которых половина сигналов принадлежит СГС режиму.

ного перехода в однородном поле и не зависит от состава газовой смеси. Из данных, приведенных в таблице, следует, что она практически не меняется также при широком изменении давления газа и напряженности электрического поля в области лавинностримерного перехода.

4

Таблица

Р атм.	<u>d</u> мкм.	Ј _П мкА	U _{II} ĸB	Е _а кВ/см	Չ _{Ա1} пКл	Q _{п2} пКл	t нс	ζ мкс хсм
0,4 0,6 0,8 1,0 1,2 1,6 2,0	50 _''_ _''_ _''_ _''_ _''_	180 140 100 100 64 64 45	2,14 2,47 2,77 3,01 3,26 3,67 4,00	142 164 184 200 217 244 266	4,7 5,4 5,1 5,5 4,9 4,3	117 71 38 23 26 13 9	200 130 70 50 35 25 20	400 124 68 41 28 17 12
1,0 _''_ _''_ _''_ _''_	10 20 100 200 400	100 100 100 100 100	2,20 2,41 3,30 4,08 5,20	577 348 124 88 66	6,9 5,6 3,6 3,5	19 43 107 115	25 55 70 75 55	230 94 53 51 35

Здесь: J_п - порог срабатывания электроники, при котором измерялись счетные характеристики, представленные на рис.1; U_п напряжение перехода, при котором половина сигналов принадлежит пропорциональному режиму усиления, а половина - стримерному; Е - напряженность поля на поверхности анодной проволоки при U^{*}= U_π; Q_{π1} и Q_{π2} - средние значения амплитуд сигналов в пропорциональном и СГС режимах в точках перехода U=U_n; t длительность сигнала на полувысоте; ζ - мертвая зона.

выводы

★ Существование СГС режима в широкой области изменения давления рабочего газа и толщины анодной проволоки наряду с результатами работы /2/ свидетельствует об устойчивости режима.

≫. Основные характеристики СГС режима улучшаются с увеличением диаметра анодной проволоки и давления рабочего газа. 0собенно следует отметить резкое уменьшение мертвой зоны с ростом давления газа. Представляет интерес продолжить исследования СГС. режима.при. ббльших.довлениях.Э

.3. СГС разряд имеет сложную структуру и, возможно, состоит из нескольких одновременно развивающихся стримеров.

В заключение авторы приносят свою благодарность Л.Л.Неменову за поддержку работы, А.В.Купцову и В.В.Круглову за изтересные обсуждения, Н.А.Калининой за помощь в работе.

ЛИТЕРАТУРА

- 1. Алексеев Г.Д. и др. ОИЯИ, Р13-80-447, Дубна, 1980.
- 2. Алексеев Г.Д. и др. ОИЯИ, Р13-80-454, Дубна, 1980.

•

- 3. Lacy J.L., Lindsey R.S. NIM, 1974, 119, p.483.
- 4. Fischer J., Okuno H., Walenta A.H. NIM, 1978, 151, p.461.