0344.15 3-271 объединенный институт **ЯДЕРНЫХ** ИССЛЕДОВАНИЙ

INCOKINX JHEPT

Ad Soparto PHS

Дубна

6114

46

P13 - 6114

Ю.В.Заневский, В.Д.Пешехонов

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ ХАРАКТЕРИСТИ ПРОПОРЦИОНАЛЬНЫХ КАМЕР

P13 - 6114

Ю.В.Заневский, В.Д.Пешехонов

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ ХАРАКТЕРИСТИК ПРОПОРЦИОНАЛЬНЫХ КАМЕР

Haupableho B Nuclear Instruments

1. Конструкция камеры

Конструкция описываемых пропорциональных камер показана на рис. 1. Камеры имеют рабочую плошадь 150х150 мм², шаг намотки сигнального электрода 2 или 3 мм, расстояние между сигнальными и высоковольтными электродами – 7 мм.

Сигнальный электрод намотан золоченой вольфрамовой проволокой Ø 20 микрон с натяжением 40 Г. Высоковольтный - медной проволокой Ø 0,1 мм с шагом 1 мм.

Сигнальные и высоковольтные проволочки припаиваются к печатным электродам по обеим сторонам камеры, четырехканальные усилители устанавливаются непосредственно на камере^{/2/}. В качестве охранного кольца по периметру камеры используются полосы из фольгированного стеклотекстолита. Газовый объем камеры изолирован майларовой пленкой толщиной 60 микрон.

2. Описание установки

Исследование характеристик пропорциональных камер проводилось на лабораторной установке, функциональная схема которой показана на рис. 2. Камера через коллиматор облучалась источником ⁹⁰ Sr .

Импульсы с фотоумножителей поступали на схему совпадений. Сигналы с пропорциональной камеры через усилители подавались на схему "ИЛИ", затем формировались по длительности и поступали на схему "И", которая управлялась схемой совпадений. После схемы "И" установлен формирователь с мертвым временем ≈ 1 мксек, сигналы с которого подавались на счётчик (scaler 2). Сигналы со схемы совпадений поступали на другой счётчик (scaler 1). Таким образом, с помощью двух счётчиков легко определить эффективность камеры.

Для снятия временных спектров сигналов с пропорциональной камеры использовались время-амплитудный конвертор (ТНС) и амплитудный анализатор (РНА).

При исследовании характеристик камер сигналы снимались с 4-х соседних проволочек. Порог чувствительности каждого канала, приведенный ко входу, составлял ≈ 1,5 микроампера.

3. Экспериментальные результаты

Исследуемые камеры с шагом намотки сигнального электрода 2 и 3 мм были в остальном абсолютно идентичны.

Камеры продувались смесью аргона и **СО**₂ с добавкой паров спирта. Область полной эффективности камеры как функция высокого напряжения для разного процентного содержания **СО**₂ показана на рис. 3(а) – для камеры с шагом 3 мм. 3(в) – для камеры с шагом 2 мм.

При изменении шага намотки сигнального электрода с 3 до 2 мм начало плато сдвигается на 25%^{/3/}.

Была произведена оценка коэффициента газового усиления камер в различных точках плато. Измерения проводились для сигналов, синхронизированных со срабатыванием схемы совпадений. Коэффициент газового усиления в начале плато ≈ 4.10⁴, в конце плато ≈ 10⁷ для камеры с 3-миллиметровым шагом намотки и ≈ 2.10⁶ для камеры с 2-миллиметровым шагом. Использование пропорциональных камер для организации триггерного запуска в-экспериментальных установках накладывает существенные ограничения на количество случайных сигналов камеры в единицу времени при отсутствии ионизирующего излучения (количество щумов).

Была проведена проверка влияния некоторых органических добавок к смеси Ar + CO₂+ C₂H₅OH с целью уменьшения собственных шумов камеры.

На рис. 4 показана эффективность камеры с 2-миллиметровым шагом намотки как функция высокого напряжения (кривая 1). Кривые 2 и 3 показывают количество случайных срабатываний 4-х каналов в зависимости от высокого напряжения (с добавкой паров бензола и без нее). Видно, что пары бензола резко уменьшают количество шумовых сигналов. Такова же ситуация и для камеры с 3-миллиметровым шагом.

На рис. 5(а) приведен временной спектр, полученный с одного канала, на рис. 5(в) - с 4-х каналов камеры с 2-миллиметровым шагом намотки. Эти же спектры показаны на рис. 6 в полулогарифмическом масштабе. Ширина спектров на полувысоте составляет ≈ 10 нсек. Однако для спектра, снятого с 4-х каналов, ширина на уровне 1% - 40 нсек; на уровне 0,5% - 110 нсек.

Кривые задержанных совпадений для камеры с 2-миллиметровым шагом намотки представлены на рис. 7. Видно, что, теряя ≈ 1% эффективности, можно иметь временное разрешение (2 r) ≈ 50 нсек. Измерения проводились при E =4,5 кв.

На рис. 8 (а) слева показаны зависимости эффективности (кривая 1) и ширины временного спектра на полувысоте (кривая 2) от высокого напряжения для камеры с шагом намотки 3 мм. На правом верхнем рисунке показано изменение положения центра тяжести временного спектра в зависимости от высокого напряжения (с добавкой и без добавки бензола). На рис. 8(в) приведены те же зависимости для камеры с шагом намотки сигнального электрода 2 мм.

Заключение

На основании изложенных результатов можно сделать следующие выводы.

 Для данной смеси наилучшее временное разрешение (без потери эффективности) составляет ≈ 50 нсек. Это видно из рис. 5(в) и рис. 6.

2. Максимальное газовое усиление при использовании указанной смеси ≈ 10⁷ и 2.10⁶ для камер с 3- и 2-миллиметровым шагом намотки соответственно.

3. Добавление паров бензола значительно уменьшает собственные шумовые сигналы камер, не изменяя при этом остальных параметров. Этот факт особенно важен при использовании пропорциональных камер в организации "триггерного" запуска.

Авторы выражают благодарность Е.А. Силаеву за разработку и наладку 4-канального усилителя; В.А. Белякову, А.Б. Иванову, В.П. Пугачевичу, Д.В. Уральскому за помощь в работе, коллективу ПТО за изготовление деталей камеры.

Литература

- З. Гузик, Ю.В. Заневский, Р. Красовский, В.Д. Пешехонов, В. Попель ски и др. Доклад на симпозиуме по ядерной электронике, Варшава, 1971 г.
- 2. Yu.V. Zanevsky, T.S. Nigmanov, V.D. Peshekhonov, V.P. Pugachevich, M. Turala, Nucl.Instr. and Methods, <u>94</u>, 233–235 (1971).
- 3. G. Charpak, D. Rahm, H. Steiner. Nucl.Instr. and Methods, <u>80</u>, 13 (1970).

Рукопись поступила в издательский отдел 16 ноября 1971 года.

Рис. 2. Функциональная схема установки для исследования характеристик пропорциональных камер.

Рис. 3. Эффективность пропорциональной камеры как функция высокого напряжения в зависимости от концентрации CO₂. Расстояние между электродами камеры - 7 мм, диаметр сигнальных проволок - 20 мк, а) шаг намотки сигнального электрода - 3 мм, в) шаг намотки сигнального электрода - 2 мм.

Рис. 4. Эффективность (кривая 1) и шумы с 4-х каналов камеры (кривые 2 и 3) как функции высокого напряжения. Шаг намотки сигнального электрода камеры - 2 мм. Сигнальные проволочки Ø 20 мк.

Рис. 5. Временной спектр камеры с шагом намотки сигнального электрода 2 мм: а) с одного канала камеры; в) с четырех каналов.

Рис. 6. Временные спектры с одного (пунктирная кривая) и с четырех каналов камеры (сплошная кривая) в полулогарифмическом масштабе. Шаг намотки сигнального электрода камеры - 2 мм.

Рис. 7. Эффективность как функция задержки сигнала "строб". Камера с шагом намотки сигнального электрода 2 мм. Напряжение на камере E = 4,5 кв.

Рис. 8. Эффективность (кривая 1) и ширина временного спектра на полувысоте (кривая 2) как функции высокого напряжения – левый рисунок. Задержка центра тяжести временного спектра как функция высокого напряжения – правый рисунок: а) камера с шагом намотки сигнального электрода 3 мм; в) камера с шагом намотки сигнального электрода 2 мм.

38

47

40 E(KV)

49 E(KV)

