24/1-147

Р-9У Объединенный институт ядерных исследований

1705

BNd

1971

Дубна

P 13- 5689

В.И. Рыкалин, З. Цисек

УНИВЕРСАЛЬНЫЙ ФОРМИРОВАТЕЛЬ Импульсов Фзу

P 13- 5689

В.И. Рыкалин, З. Цисек

УНИВЕРСАЛЬНЫЙ ФОРМИРОВАТЕЛЬ Импульсов ФЭУ

- Направлено в ПТЭ

Ссъедененный снолыти встрених вссеодования БИБЛИОТЕНА Формирователь предназначен для формирования импульсов от сцинтилляционных и черенковских счётчиков. Низкий порог срабатывания формирователя позволяет снизить напряжение питания ФЭУ, что облегчает работу счётчиков в уловиях больших загрузок. Отсутствие мертвого времени по четырем выходам дает возможность применять формирователь для получения высокоэффективных антисовпадений ^{/1/}. Возможна работа формирователя в режиме "запрета" или "разрешения" в зависимости от полярности поступающих на вход "управление" внешних импульсов. Вход "управление" формирователя может быть использован для введения в его схему заданного мертвого времени при соединении одного из выходов отрицательных импульсов данного формирователя со входом "управление".

Формирователь, блок-схема которого представлена на рис, 1, содержит: входной ограничитель, усилитель, формируюшее устройство, каскад управления работой (каналы А и Б). Канал "А" содержит формирующее устройство с фиксированной длительностью импульсов и выходной каскад.

Каскад "Б" состоит из III -го формирующего устройства со схемой, задающей длительность выходных сигналов и выходного каскада. Принципиальная схема формирователя представлена на рис. 2а. Входной отрицательный импульс с ФЭУ дифференцируется на короткозамкнутом кабеле

Рис. 1. Блок-схема формирователя.

длиной 1 м и отрицательной полуволной переключает ток, протекающий в диоде Д₁ в диод Д₂. Ограничители Д₁Д₂Д₃ начинают эффективно ограничивать входные сигналы с амплитудой ~ 500 мв. Дифференциальный каскад Т₁Т₂ усиливает (≈ 2 х) сигнал, поступающий с ограничителя и передает его на базу транзистора Т₂.

В эмиттерной цепи транзистора T_3 включена дифференцирующая цепочка с постоянной времени $r_g = R_{11}$ $C_2 = 1,4$ сек. Можно считать, что в момент появления импульса на базе транзистора T_3 в его эмиттерной цепи включено нагрузочное сопротивление R_{11} , увеличивающееся при воздействии сигнала с постоянной времени r_g до величины R_{16} /2/. В результате этого в коллекторной цепи T_3 образуется положительный импульс тока с амплитудой ≈ 4 ма и длительностью по основанию

≈5 нсек. Такой способ формирования входных импульсов исключает многократное срабатывание от одного входного импульса последующих формирующих устройств на туннельных диодах, позволяет уменьшить эффекты, связанные с наложением друг на друга входных импульсов, и служит надежной защитой от импульсных наводок. Положительный импульс коллекторного тока транзистора Т, запускает регенеративный формирователь Д45555676 с мертвым временем ≈7 нсек и порогом срабатыва->1 ма. При этом на диоды Д₆Д₁₃ поступает токовый импульс ния с амплитудой >10 ма и длительностью по основанию ≈ 3,5 нсек. Через диоды Д₆Д₁₃ транзистор Т₇ положительным импульсом запускает формирующие устройства каналов А и Б. Выходной импульс формирующего устройства канала (Д7Т8Т9) с амплитудой 1,5 в и длительностью по основанию 5-16 нсек управляет токовым ключом, выполненным на транзисторе Т₁₀ и диоде Д₉. В коллекторной цепи транзистора Т₁₀ образуется выходной импульс формирователя с амплитудой 36 ма. Время нарастания и спада выходного импульса >1,5 нсек. Длительность выходного импульса 5-16 нсек. Мертвое время по каналу A составляет ≈7 нсек^{/3/}. Канал

Б состоит из безинерционного формирователя длительности импульсов, использующего ДНЗ, и выходного каскада. Положительный импульс тока коллектора Т, запускает одновибратор с линией задержки для формирования импульсов, поступающих в дальнейшем на ДНЗ (Д17). Формирование такого рода вызвано необходимостью строго дозировать накапливаемый в ДНЗ заряд, чтобы исключить изменение длительности выходных импульсов при изменении амплитуды входных. Через усилитель тока Т₁₂Т₁₅ отрицательный импульс длительностью 3 нсек подается на смещенный в обратном направлении ДНЗ. Импульсно накопленный заряд в диоде ${\tt I\!I}_{17}$ рассасывается через сопротивление $\,R_{\,62}\,$. Скорость рассасывания накопленного в ДНЗ заряда зависит от величины обратного смещения, подаваемого с эмиттерного повторителя T_{11} и сопротивления R_{62} . При фиксированном напряжении смещения и величине сопротивления R 62 время восстановления обратного сопротивления ДНЗ, а тем самым и дливыходного импульса, определяются количеством заряда, вветельность денного в ДНЗ, т.е. амплитудой тока, поступающего с коллектора транзистора Т 15. Установка длительности выходных импульсов в канале Б производится с помощью переключателя П . Отрицательный перепад напряжения, образующийся на ДНЗ, поступает на вход дифференциального каскада Т₁₃Т₁₄. Импульс отрицательной полярности через диоды Д₁₅Д₁₆ подается на одновибратор Д14, что исключает продлевание выходного импульса при временном интервале между поступающими на диод Д14 импульсами меньшим, чем установленная переключателем II длительность выходных импульсов. Через эмиттерный повторитель Т₁₆ положительный импульс коллектора Т14 управляет выходным токовым ключом Т17 18. Транзистор Т₁₈ нормально открыт и через него протекает ток 32 ма, что на сопротивлении 25 ом (параллельное подключение двух 50-омных входов последующих схем) создает отрицательный уровень напряжения величиной 0,8 в. Во время поступления положительного импульса на вход

нормально закрытого транзистора T₁₇ эмиттерный ток транзистора T₁₈ переключаетсяв транзистор T₁₇, в коллекторной цепи которого образуется отрицательный токовый импульс заданной длительности с амплитудой тока 32 ма.

Постоянный отрицательный уровень в коллекторе T₁₈ на время воздействия положительного импульса в базе T₁₇ возрастает до нуля.

Время нарастания отрицательного и положительного (на отрицательном уровне) выходных импульсов порядка 1,5 нсек. Времена их спада 2 нсек. Формирователь в целом испытывался на работоспособность при повышенных температурах. При увеличении температуры до 55 °C не было обнаружено (с точностью ±5%) изменения длительности выходных импульсов по сравнению с комнатной температурой в течение 8-часовых испытаний. Подключение на вход формирователя навесного аттенюатора, схема которого представлена на рис. 26, дает возможность использовать формирователь в режиме интегрального дискриминатора. Полоса пропускания аттенюатора (при аккуратном монтаже) составляет ≈ 250 Мгц. Основные параметры формирователя представлены в таблице 1.

Результаты испытаний формирователя

Испытания формирователя (партия из 30 шт) проводились на синхроциклотроне ЛЯП ОИЯИ и синхрофазотроне ИФВЭ в период подготовки эксперимента по поиску новых тяжелых частии^{/4/}. На рис. 3 представлена счётная характеристика формирователя (кривая N_c), измеренная в режиме двукратных совпадений на синхропиклотроне. В среднем, при загрузках формирователя N_ф =2·10⁵ x 20/сек (20 - скважность работы ускорителя) величина плато счётной характеристики N_c составляет

≈ 1400 в. При этом амплитуда импульсов ФЭУ изменялась в ≈ 120 раз, а полуширина на полувысоте кривой задержанных совпадений (точки U₁ = =1700 в и U₁ =2800 в) менялась незначительно (≈ 2%). Подобные ре-

Таблица I

Основные параметры формирователя

Канал А Канал Б	I00	- 100	- I20	I !	0	2 4	5 IO+IUU регулируем. скачкообразн.	I , 5	I,5 2	+12 B -150 Ma	-12 B -220 Ma
дин. измер.	МО	MB	×	20/%	нсек			0B HCeK	нсек		
Параметр формиро- вателя	Входное сопротивление	Порог срабатывания (при време- ни нарастания входного импуль- са 5нсек)	Динамический диапазон входных импульсов	Стабильность порога срабатывания	Мертвое время для парных входных импульсов	Число выходов	Длительность выходных импульсов	Время нарастания выходных импульс (на согласованной нагрузке)	Время спада выходного импульса	Потребляемая мощность	
년 11/п	- 	 ຈໍ	ຕ ໍ	.4.	ۍ ۲	.0	7.	ယ်	б	IU.	

зультаты были получены для канала Б. На рис. 4 представлена блок-схема и результаты измерений зависимости временной задержки выходного импульса от амплитуды входного импульса с временем нарастания 5 нсек. Измерения проводились от электрических импульсов ртутного генератора (РГ) с помощью время-амплитудного преобразователя (Т-А) и многоканального анализатора амплитуды (МАА). Импульсы на исследуемый формирователь (Ф2) подавались с линейного разветвителя (ЛР) через затягивающую фронт импульса РГ индуктивность L до величины ≈5 нсек и дальше через аттенюатор (рис. 26), с помощью которого менялась амплитуда входных импульсов, запускающих формирователь Ф. Выходной импульс формирователя Ф, запускал Т-А по каналу "стоп". На канал "старт" сигнал РГ с временем нарастания 0,8 нсек подавался через согласованный пассивный разветвитель (ПР) и формирователь Ф₁. Аттенюатор вносил в измерения временную ошибку порядка 25 псек за счёт увеличения собственной задержки при изменении затухания в диапазоне затухания 0-31 дб. На анализаторе путем изменения затухания в канале "старт" была получена серия временных распределений выходных импульсов формирователя Ф₂, представленная на рис. 4 в координатах (N N _к), В координатах [Δτ (нсек); U_{вх} (b)] представлена кривая Δ r=f(U _,), построенная на основании измеренных временных распределений и заданных затуханий в канале "стоп". Значительное уширение временных распределений при амплитудах входных импульсов, близких к порогу срабатывания, вызвано уменьшением их крутизны вблизи точки пе-

региба. Из рис. 4 следует, что при амплитудах входных импульсов U ≫ U (U ≈ 546 в) временного джиттера выходного импульса практически не существует. Этот факт подтверждается измерениями на пучке заряженных частиц, результаты которых представлены на рис. 5. При большом энерговыделении в сцинтилляторах (≈ 5 Мэв), что обеспечивает малый амплитудный разброс и соответствующее значение средней амплитуды импульсов ФЭУ, было получено временное разрешение 27 =0,3 нсек.

Рис. 3. Счётные характеристики формирователя.

Рис. 5. Временное разрешение формирователей при большом световыделении.

Рис. 6. Определение $r_u = f(UBx)$.

Методом случайных совпадений была определена зависимость длительности выходного импульса τ_u каналов А и Б от амплитуды входното $\tau_u = f$ (U). Измерения проводились по блок-схеме, представленной на рис. 6. Сигналы от сцинтилляционного счётчика С, возбуждаемые ⁶⁰ Со . подавались через аттенюатор на вход исследуемого формирова-

теля.

Напряжение питания счётчика С было зыбрано так, что при введении полного затухания аттенюатора (31 дб) число отсчётов формирователя исчислялось единицами в минуту. Это означает, что формирователь срабатывал только от пороговых импульсов данного спектра амплитуд (~100мв). При выключенном аттенюаторе загрузка составляла 10⁶ имп/сек. Выходные импульсы формирователя с заданной длительностью поступали на один из входов схемы совпадений СС. На второй вход СС поступали импульсы от генератора Г. С помощью пересчёток П₁П₃, управляемых одним таймером Т, измерялись отсчёты в каналах схемы совпадений и число случайных совпадений П₂. Зависимость $\tau_u = f$ (U $_{\rm BX}$), построенная по результатам измерения для канала Б, показана на рис. 6. Наличие зависимости $\tau_u = f$ (U $_{\rm BX}$) связано, по-видимому, с недостаточно жесткой дозировкой заряда, поступающего на ДНЗ при широком спектре амплитуд входных сигналов.

В широком интервале частот (≈ 10⁵) была исследована зависимость длительности выходных сигналов от частоты входных по блок-схеме, приведенной на рис. 7. Последовательное включение формирователей исключает влияние на длительность выходных сигналов амплитуды входных. Результаты измерений (рис. 7) показывают, что в широком дианазоне частот входных импульсов длятельность выходных не зависит от частоты следования входных. Работа формирователя в режиме интегрального дискриминатора исследовалась по блок-схеме рис. 8. Сигнал с динода счетчика С₂ через линейные ворота ЛВ подавался на многоканальный анализатор

Рис. 7. Определение $r_{u} = f(t)$.

Рис. 8. Работа формирователя в режиме интегрального дискриминатора.

амплитуды МАА. Линейные ворота управлялись сигналами схемы совпадений СС. Сигнал счётчика С₂ через аттенюатор (рис. 26) запускал Ф₂, включенный в схему совпадений. Результаты испытаний представлены на рис. 8. Из рис. 8 следует, что в таком режиме формирователь обеспечивает неопределенность порога ≈ 6% при линейности лучше 1%. На рис. 9, 10, 11, 12 показаны осциллограммы выходных импульсов формирователя. Формирователи этого типа работали в течение многочасовых экспозиций по поиску новых тяжелых частиц^{/6/} и исследованию спектра быстрых дейтонов^{/6/}.

Авторы признательны В.Г. Зинову, А.И. Ронжину и Д.М. Хазинсу за полезные обсуждения.

Литература

- 1. М.И. Грачев и др. Препринт ИФВЭ 69-62, Серпухов, 1969.
- 2. H.Verweij and G.Vismara. CERN, 69-26, Geneva 1969.
- 3. З.В. Крумштейн и др. Препринт ОИЯИ, 13-5367, Дубна, 1970.
- 4. Z.Cisek et al., (Dubna, Serpukhov) Int.Conf. on Instr. for High Energy Physics, Dubna, 1970.
- 5. В. Ботхин и др. Доклад на ХУ Международной конференции по физике высоких энергий. Киев, 1970.

6. Л.С. Ажгирей и др. Препринт ОИЯИ, Р1-4985, Дубна, 1970.

Рукопись поступила в издательский отдел 16 марта 1971 года.

a)

d)

Рис. 9. Осциллограмма выходных импульсов формирователя. а) Канал А, развертка 2 нсек/см, чувствительность 0,2 в/см. б) Канал Б, развертка 1 нсек/см, чувствительность 0,2 в/см.

Рис. 10. Осциллограммы импульсов формирователя; а) импульсы канала А, развертка 5 нсек/см, чувствительность 0,1 в/см; г) импульсы канала Б, развертка 5 нсек/см, чувствительность 0,2 в/см; б)в)д)е) верхний луч – импульсы, запускающие формирователь, развертка 10 нсек/см, чувствительность 0,2 в/см; б)в)д) нижний луч – выходные отрицательные импульсы канала Б при разной скважности, развертка 10 нсек/см, чувствительность 0,2 в/см; е) нижний луч – положительный выходной импульс канала Б при скважности, близкой к единице, развертка 10 нсек, чувствительность – 0,2 в/см.

a)

Ø)

в)

Рис. 11. Работа формирователя в режиме управления, а) Режим антисовпадений, б) режим совпадений. На верхних лучах осциллограмм показаны выходные импульсы канала А. На нижних лучах осциллограмм показаны импульсы, подаваемые на вход "управление", развертка 10 нсек/см.