5403

ЭКЗ. ЧИТ. ЗА

СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубна

P13-5403

Ю.В. Куликов, Н.И. Малаш кевич, В.Д. Рябцов, Е.А. Силаев

1970

AGODATOPHS BUCOKMX THEPIN

ИОНИЗАЦИОННЫЙ СЧЕТЧИК " dE " С НАПОЛНЕНИЕМ ЖИДКИМ КСЕНОНОМ Куликов Ю.В., Малашкевич Н.И., Рябцов В.Д., Силаев Е.А.

Ионизационный счетчик "<u>dE</u>"с наполнением жидким ксеноном

P13-5403

Описывается ионизационный счетчик " $\frac{dE}{dx}$ ", наполненный жидким ксеноном. Чувствительная площадь счетчика 50 см²; толщина регистрирующего слоя жидкого ксенона $\iota = 2r/cm^2$. Приводятся результаты испытаний счетчика в пучке π^- -мезонов с $P_c = 6$ Гэв.

Сообщения Объединенного института ядерных исследования Дубиа, 1970

Kulikov Yu.V., Malashkevich N.I., Ryabtsov V.D., P13–5403 Silaev E.A.

Ionization Counter "dE_"Filled with Liquid Xenon

The ionization counter " $\frac{dE}{dE}$ " filled with liquid xenon is described. The sensitivity area of the counter is equal to 50 cm², the depth of the recording layer of liquid xenon being, $\iota = 2 \text{ g/cm}^2$. The results of the counter testing in π^- -meson beam with Pc = 6 GeV are presented.

Communications of the Joint Institute for Nuclear Research.

Dubna, 1970

P13-5403

Ю.В. Куликов, Н.И. Малаш кевич, В.Д. Рябцов, Е.А. Силаев

ИОНИЗАЦИОННЫЙ СЧЕТЧИК " dk " с наполнением жидким ксеноном

В /1/ описана плоскопараллельная ионизационная камера на основе жидкого и твердого аргона. В целях дальнейшего изучения регистрирующих свойств конденсированных благородных газов был изготовлен счётчик " $\frac{dE}{dx}$ " с наполнением жидким ксеноном (рис.1).

Два электрода – высоковольтный (7) и собирающий (8) – закреплены в изоляторах из органического стекла (5) и (6), помещенных в латунный корпус счётчика (1). Фланцы (2) и (3) герметизируют рабочий объем счётчика. Конденсация ксенона происходит при давлении в счётчике $P \stackrel{\approx}{=} 30$ атм и температуре $T \stackrel{\approx}{=} - 19^{\circ}$ С. Газообразный ксенон поступал через газовый ввод во фланце (3).

Охлаждение счётчика производилось с помощью холодильной фреоновой установки. Стабильность температуры при помощи системы термостабилизации поддерживалась с точностью ±0,5%. Для конденсации использовался "ксенон чистый". Для дополнительной очистки от электроотрицательных примесей (кислород и др.) применялась нагретая до = 500°С кальциевая стружка.

Счетчик "<u>dE</u>" с наполнением жидким ксеноном испытывался в пучке π⁻-мезонов с _{p c} = 6 Гэв. Счетчик размещался на пучке таким образом, что частицы проходили перпендикулярно электродам (параллельно электрическому полю). Рабочая площадь счетчика при этом составляла 50 см² (диаметр собирающего электрода d = 8 см). Межэлектродное расстояние равнялось 9 мм, что соответствует t ≡ 2,0 г/см² жидкого ксенона (p₀ = 2,2 г/см³). Методика измерений, а также спектрометрическая аппаратура описаны в /2/.

В эксперименте измерялись распределения ионизационных потерь *п* -мезонов. Как показал Ландау /3/, ионизационные потери частиц

3

в тонких поглотителях (детекторах) подвержены значительным флуктуациям. Это связано с тем, что при некоторых столкновениях могут образовываться δ -электроны больших энергий. Флуктуации небольшого числа таких δ -электронов приводят к тому, что распределение потерь энергии несимметрично и имеет пологий спад в сторону больших значений, потери энергии при этом распределены около некоторого наиболее вероятного значения ϵ вер. Асимметрия распределения зависит от вещества поглотителя, его толшины, а также от природы частицы и ее энергии /4/.

На рис. 2 (фото с ленты самописца) показан спектр ионизационных потерь π^- -мезонами с рс = 6 Гэв в слое жидкого ксенона толщиной t = 2 г/см². Видно, что спектр имеет характерную форму распределения Ландау. Асимметрия распределения η = 1,35. Наиболее вероятное значение ионизационных потерь $\epsilon_{\rm Bep}$ = 0,54 ±0,3 Мэв. Полная ширина на полувысоте $\Delta \stackrel{\approx}{=} 160$ кэв, относительная процентная ширина $\sigma = \Delta / \epsilon_{\rm Bep} \stackrel{\approx}{=} 30\%$.

Измерялась зависимость $\epsilon_{\text{вер}}$ от напряженности поля (рис. 3) в диапазоне от 0,11 до 5,6 кв/см. Насыщение наступает при напряженности поля E = 0,33 кв/см. Среднее значение $\epsilon_{\text{вер}}$ при полях 0,33±0,89 кв/см составляет $\epsilon_{\text{вер}} \approx 0,53\pm0,3$ Мэв. Расчет ожидаемой величины $\epsilon_{\text{вер}}$ для π^- -мезонов с $\mathbf{p} \, \mathbf{c} = 6$ Гэв в слое $\mathbf{i} = 2,0r/cm^2$ жидкого ксенона по формуле Ландау-Симона /4/ с учетом эффекта плотности по теории Стернхеймера /5/ дает:

с (теор.) ≅ 2,20 Мэв.

Так как в счетчике собирались только электроны, то с учетом геометрического эффекта (геометрический фактор "1/2") величина $\epsilon_{\text{вер}}$ в случае полного сбора электронов должна составлять $\stackrel{\approx}{=}$ 1,10 Мэв. Экспериментально получено $\epsilon_{\text{вер}} = 0,54\pm0,3$ Мэв, что составляет $\stackrel{\cong}{=}$ 50% расчетного значения. Это расхождение, вероятно, обусловлено электроотрицательными примесями в жидком ксеноне, которые захватывали часть электронов ионизации. Возможно, что наличие примесей определило и "ступенчатую" структуру плато по напряжению.

4

Рис. 1. Ионизационный счетчик " $\frac{dE}{dx}$ " с наполнением жидким ксеноном.

Рис. 2. Спектр ионизационных потерь "-мезонами.

0

Измерения показали, что время сбора электронов составляет $\tau \approx 0,75$ мксек и не зависит от напряженности поля (в пределах точности измерений) от 0,33 до 5,6 кв/см. Счетчик работал в пучке π^- -мезонов в течение 20 часов при загрузке $\cong 10^4$ частиц в секунду ($\cong 10^3$ в цикле ускорителя). С течением времени не наблюдалось сдвигов наиболее вероятных значений ионизационных потерь, ширина спектров также оставалась постоянной.

Авторы благодарят И.А. Голутвина и В.А. Свиридова за интерес к работе и сотрудников отдела эксплуатации электронно-физической аппаратуры за помощь в проведении эксперимента.

Литература

1. Л.Б. Голованов, В.Д. Рябцов, Е.А. Силаев, А.П. Цвинев. Сообщение ОИЯИ Р13-5404, Дубна, 1970.

2. В.Д. Рябцов, Е.А. Силаев. Сообщение ОИЯИ Р13-5402, Дубна 1970. 3. Л. Ландау. J. of Phys. USSR, <u>8</u>, 204 (1944).

4. Б. Росси. Частицы больших энергий, М., ГИТТЛ, 1955.

5. R.M. Sternheimer, Phys.Rev., <u>103</u>, 511 (1956).

Рукопись поступила в издательский отдел 14 октября 1970 года.