

P13 · 3918

Л.С.Охрименко, Б.Словинский, З.С.Стругальский

к вопросу об определении эффективности регистрации у -квантов в ксеноновой пузырьковой камере

1968

P13 - 3918

٤,1

Л.С.Охрименко, Б.Словинский, З.С.Стругальский

7 408/3 w

к вопросу

ОБ ОПРЕДЕЛЕНИИ ЭФФЕКТИВНОСТИ РЕГИСТРАЦИИ У -КВАНТОВ В КСЕНОНОВОЙ ПУЗЫРЬКОВОЙ КАМЕРЕ

Разработанная и описанная в ряде работ^{/1-5/} методика измерения энергий у -квантов, Е_у, накладывает требования на способ определения эффективности регистрации у -квантов при условии возможности измерения их энергий с точностями не хуже заданных.

Е у определяется, в диапазоне значений от ~ 10 Мэв до ~ 3000 Мэв, из корреляции между полным пробегом R электронов и позитронов в ливне, созданном у -квантом, и длиной развития ливня в камере, d, на которой производится измерение R $^{/3/}$. Наиболее точное определение E_{γ} достигается тогда, когда ливень развивается полностью в камере, при обрезанных ливнях достигаемые точности худшие и зависят от степени обрезанных ливнях достигаемые точности худшие и зависят от степени обре-

В настоящей работе дается способ определения статистических весов у -квантов, регистрированных в ксеноновой пузырьковой камере, с учётом выбранной допустимой погрешности в Е_γ, а также приводятся необходимые сведения об угловых и энергетических спектрах у - квантов сопровождающих π - Хе взаимодействия при 5 и 9 Гэв/с. Энергетические и угловые распределения могут быть полезны при планировании опытов на ксеноновой пузырьковой камере.

Для зарегистрирования y -кванта, генерированного в некой точке в камере, и определения его энергии необходимо располагать достаточной областью для конверсии y -кванта и, следовательно, для развития электронно-фотонного ливня, созданного им. Средняя длина конверсии, $\overline{\lambda}$, зависит от энергии y -кванта, и эту зависимость, как и зависимость средней длины развития, \overline{d} , от энергии необходимо учесть при определении эффективностей регистрированных y -квантов.

1. Зависимость средней длины конверсии у -квантов в жидком ксеноне от их энергии

Зависимость средней длины конверсии $\overline{\lambda}$ (см) от энергии Е γ (Мэв) можно с приближением не хуже чем 5% выразить с помощью формулы

$$\overline{\lambda} = 5,2 (1 + 13 E_{\gamma} -0.7706),$$
 (1)

пригодной в диапазоне энергии выше 10 Мэв. Значения λ , соответствующие разным значениям $\mathbf{E}_{\mathbf{y}}$, приведены в табл. 1.

Εγ	(Мэв)	20	40	60	80	100	150	200	3 00	500	1000
ž	(см.)	11,9	9,5	8,1	7,4	7,1	6,6	6 ,3	5,9	5,6	5,2
d max	(см) ?	3	4	7	9	11	15	17	20	24	30
d 20%	(см)	3	4	5	7	8	10	11	12	15	18

Таблица 1

Обозначения:

 E_y - энергия у -квантов; $\overline{\lambda}$ - средняя длина конверсии; d_{max} - средняя длина развития ливня, необходимая для измерения E_y с максимальной точностью; $d_{30\%}$ - средняя длина развития ливня, необходимая для измерения E_y с точностью не хуже чем 30%.

2. Зависимость средней глубины развития ливня d,,

на которой выделяется А % энергии Е у

Зависимость точности определения E_{γ} от длины d, на протяжении которой намеряем R, обусловлена главным образом флюктуациями в продольном развитии ливней. Относительная доля этих флюктуаций уменьшается с увеличением d ^{/3/}. Флюктуируют также и значения глубины развития \overline{d}_A , на протяжении которых выделяется в виде ионизации среды электронами и позитронами некоторая доля A% полной энергии лавин. Определенному A соответствует для данного E_{γ} значение $\overline{d}_A(E_{\gamma})$. Практически для большинства задач, решаемых нами, достаточно было ограничиться условием $A \ge 70\%$. При этом, как показал анализ экспериментального материала, относительная точность $\Delta E_{\gamma}/E_{\gamma}$ не хуже 25% в диапазоне от 10 Мэв до 2300 Мэв. Если $A \ge 90\%$, то $\Delta E_{\gamma}/E_{\gamma}=12+15\%$.

Зависимость средней глубины развития $\overline{d}_{A}(E_{y})$ ливня для трех значений A = 70%, 80% и 90%, найденная по экспериментальным данным, имеет следующий вид:

$$\overline{d}_{A}(E_{\gamma}) = 10 \qquad (2)$$

при Е_у > 204 Мэви

$$\overline{d}_{A}(E_{\gamma}) = \frac{\log E_{\gamma} - 1,0792}{0,0164}$$
(3)

101

при Еу ≤ 204 Мэв.

Значения параметров а и ь даны в табл. 2.

Таблица 2

A	70%	80%	90%	
* A	1,610	1,489	1,425	
^ь .	0,0581	0,0556	0,0521	

3. Статистический вес у-квантов с энергиями Еу

при учёте требуемой точности $\Delta E / E$ у у

Статистический вес γ -кванта энергии Е_γ с учётом требуемой точности ΔE_γ / E_γ запишем в виде

$$\omega = \frac{1}{1 - e^{-\mu (E_{\gamma})(L - d_{A}(E_{\gamma}))}} .$$
(4)

L – потенциальная длина конверсии γ –кванта; μ – коэффициент поглощения γ –кванта; он связан со средней длиной конверсии λ (E_γ) следующим образом:

$$\mu (\mathbf{E}_{\gamma}) = \frac{1}{\overline{\lambda} (\mathbf{E}_{\gamma})}$$
 (5)

При определении энергий у -квантов высших энергий, Е_у>З Гэв, по числу электронов в максиуме ливня^{/4/} вместо d_A следует подставить среднюю глубину d_{max}, на которой находится максимум.

4. Энергетические и угловые распределения У -квантов

в п - Хе взаимодействиях при 5 и 9 Гэв/с в л.с.к.

На рис. 1 и рис. 2 приведены распределения У -квантов в л.с.к. в **п** - Хе взаимодействиях при 5 и 9 Гэв/с. На рис. 3 дано распределение по углам суммарной энергии, уносимой У -квантами, в пределах уг лов между первичным п -мезоном и направлением эмиссии у -квантов $\Delta \Theta_{\pi V}^{i}$.

Литература

- 1. З.С.Стругальский. Матерналы совешания по методике пузырьковых камер. Препринт ОИЯИ, 796, Дубна, 1961.
- 2. Л.П.Коновалова, Л.С.Охрименко, З.С.Стругальский. Препринт ОИЯИ, P-700, Дубна, 1961; ПТЭ<u>6</u>, 26 (1961).
- 3. Я.Даныш, З.С.Стругальский, О.Чижевский. Препринт ОИЯИ, Р-1144, 1962; Acta Physica Polonica, <u>24</u>, 509 (1963).
- 4. Б.Ничипорук, З.С.Стругальский. Препринт ОИЯИ 1989, Дубиа, 1965.
- 5. И.А.Ивановская, Т.Канарек, Л.С.Охрименко, Б.Словинский, З.С.Стругальский, З.Яблонский, И.В.Чувило. Препринт ОИЯИ, Р1-3317, Дубна, 1967.

Рукопись поступила в издательский отдел 11 июня 1968 года.

Рис. 1. Энергетические распределения у -квантов во взаимодействиях п-Хе при 5 и 9 Гэв/с.

Рис. 2. Угловые распределения у -квантов во взаимодействиях и- Xe при 5 и 9 Гэв/с.

Рис. 3. Угловые распределения суммарных энергий у -квантов, эмиттированных в данном интервале угла $\Delta \Theta^{1}_{\pi\gamma}$ между направлением движения первичного *т* -мезона и направлением эмиссии у -квантов.