T-484

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Ă

Million

1111111111

Дубна

P13 - 3726

Л.Г.Ткачев

НЕКОТОРЫЕ ВОПРОСЫ ТЕОРИИ РОСТА И КОНДЕНСАЦИИ ПУЗЫРЬКОВ В ПУЗЫРЬКОВЫХ КАМЕРАХ

P13 - 3726

Л.Г.Ткачев

НЕКОТОРЫЕ ВОПРОСЫ ТЕОРИИ РОСТА И КОНДЕНСАЦИИ ПУЗЫРЬКОВ В ПУЗЫРЬКОВЫХ КАМЕРАХ

7304/2 up.

Практические потребности развития техники пузырьковых камер представляют собой одну из важных причин, стимулирующих теоретические и экспериментальные исследования поведения пузырьков в жидкости, в частности, исследования процессов асимптотического роста и конденсации пузырьков.

Основные закономерности поведения парового пузырька в перегретой жидкости изучались в работах Плесета и Цвика^{/1/}, Форстера и Цубера^{/2/}. Они показали, что скорость роста пузырька^{x/} в жидкости зависит от ряда факторов: инерции и вязкости жидкости, скорости звука в жидкости и в паре, скорости испарения жидкости и скорости подвода тепла из окружающей жидкости к стенке пузырька. В области, где радиус пузырька R много больше критического, фактором, определяющим скорость роста пузырька, является скорость теплопередачи в жидкости. Из-за малой скорости роста пузырька по сравнению со скоростью звука процесс теплопередачи рассматривается при условии, что давление в жидкости равно давлению пара в пузырьке, а температура жидкости на границе пузырька

T_о равна температуре пара и определяется из условия равновесия пара и жидкости при данном давлении.

Результаты, полученные в работах^{/1,2/}, находятся в хорошем соответствии с экспериментальными данными Дергарабедяна^{/3/}, который изучал рост пузырьков в перегретой воде. Однако измерения скорости роста и конденсации пузырьков в жидководородных пузырьковых камерах, полученные в работах Альвареца^{/4/}, Фабиана и др.^{/5/}, Харигела и др.^{/6/}, свицетельствуют об определенном расхождении с результатами теоретических

х/ Следует иметь в виду, что излагаемая теория роста пулирьков автомлгически переносится на процесс их конденсации с изменениями, о которых указывается только там, где это цеобходимо.

исследований^{/1,2/}. В работе Александрова и др.^{/7/} показано, что на скорость роста и конденсации пузырьков существенно влияет всплывание пузырьков, однако его учёт не устраняет расхождения с экспериментальными данными, причём отклонение от теоретических величин составляет 10 + 30% в случае роста пузырьков и достигает 300% в случае их конденсации.

Настоящая работа представляет собой попытку выяснения причин расхождения теоретических и экспериментальных эначений скорости роста пузырьков в перегретой жидкости. Целесообразно дать краткую формулировку основных положений теории роста (конденсации) пузырьков в жидкости^{/1,2,8/}, прежде чем переходить к ее критическому анализу. Чтобы не усложнять задачу, всплывание пузырьков в данной работе не рассматривается, к тому же его исследование^{/7/} само базируется на результатах теории поведения неподвижных пузырьков. Если не учитывать всплывания, мы имеем дело со сферически симметричной задачей отыскания решения трех уравнений:

$$\frac{4\pi}{3} L \rho' \frac{dR^3}{dt} = 4\pi R^2 k \frac{\partial T}{\partial R}; \qquad (1)$$

$$\frac{\partial \rho}{\partial t} + \frac{1}{r^2} \frac{\partial}{\partial r} (\rho r^2 \dot{r}) = 0; \qquad (2)$$

$$c_{p} \rho \frac{dT}{dt} = \frac{1}{r^{2}} \frac{\partial}{\partial r} (r^{2} k \frac{\partial T}{\partial r}); \qquad (3)$$

уравнения сохранения энергии при испарении жидкости с поверхности пузырька (1), уравнения непрерывности (2) и уравнения теплопроводности (3) с соответствующими граничными и начальными условиями

$$T(R,t) = T_{\alpha}, \quad T(\infty,t) = T_{\alpha}, \quad T(r,0) = T_{\alpha}, \quad (4)$$

где L, ρ' – теплота испарения и плотность пара, k, ρ , c_p – теплопроводность, плотность, теплоемкость жидкости при постоянном давлении, r – радиальная координата точки в жидкости, t – время, T(r,t) и T_∞ – температура в прилегающем слое^{X/} и на большом удалении от центра пузырька. Уравнение (1) справедливо при условии, что давление в системе не зависит от времени, причём все величины, входящие в уравнение, вычислены в точке на границе пузырька. При решении уравнений (1)-(3) предполагается, что теплофизические параметры k, ρ , c_p являются не зависящими от температуры константами ^{XX/}. Исходная система уравнений становится проще, если перейти к новым независимым переменным и к новой искомой функции согласно преобразованию:

$$h = \frac{r^{3} - R^{3}}{3} ; r = D \int_{0}^{t} R^{4}(t) dt , \quad \theta = -\frac{T - T_{\infty}}{\Delta T} , \quad (5)$$

где $D = \frac{k}{\rho c_p}$ - так называемая температуропроводность жидкости, а $\Delta T = T_{\infty} - T_0^c$ - перегрев жидкости. В результате этого преобразования уравнения (1)-(3) и дополнительные условия (4) трансформируются к виду:

$$\frac{dR^{\circ}}{dr} = \frac{3k\Delta T}{DL\rho'} \frac{\partial\theta(0,r)}{\partial h} , \qquad (6)$$

$$\dot{h} = 0$$
 (7)

$$\frac{\partial \theta}{\partial r} = \frac{\partial}{\partial h} \left[\left(1 + \frac{3h}{R^8} \right)^{\frac{4}{8}} - \frac{\partial \theta}{\partial h} \right], \qquad (8)$$

х/Слой жидкости у поверхности пузырька, в котором происходит изменение температуры от Т_о до Т_т.

xx/Справедливость такого предположения для случаев воды и жидкого водорода анализируется ниже.

$$\theta(0, \tau) = -1, \theta(\infty, \tau) = \theta(h, 0) = 0.$$
⁽⁹⁾

При решении уравнения (8) возникают трудности, так как оно содержит неизвестную функцию R(r). Эти трудности удается обойти, если предположить, что отношение $\frac{3h}{R^8} \ll 1$, так как в этом случае можно воспользоваться методом теории возмущений. Нетрудно показать, что в нулевом приближении решение системы уравнений (6)-(8) имеет вид:

$$\theta = -1 + \frac{2}{\sqrt{\pi}} \int_{0}^{h/2\sqrt{\tau}} e^{-x^{2}} dx$$
 (10)

$$R^{3} = \frac{6 \Delta T k}{L \rho' D \sqrt{\pi}} \sqrt{r} \equiv 6 A_{0} \sqrt{r} \qquad (11)$$

После того, как решение $\theta = \theta(b,r)$ и $R^{3} = R^{3}(r)$ найдено, можно вычислить среднее значение величины $\frac{3b}{R^{3}}$ с тем, чтобы проверить исходное предположение о ее малости. По определению получаем:

$$3 < \frac{h}{R^8} > \equiv \frac{\int_{0}^{\infty} \frac{3h}{R^8} \theta(h, r) dh}{\int_{0}^{\infty} \theta(h, r) dh} = \frac{\pi}{4} \frac{L\rho' D}{k \Delta T}$$
(12)

Физический смысл величины $3 < \frac{h}{R^3}$, как ясно из соотношения (12), - это отношение объема прилегающего слоя к объему пузырька. Ниже, в таблице 1, приводятся значения $3 < \frac{h}{R^3}$, вычисленные по формуле (12) для воды и жидкого водорода с тем, чтобы сравнить, насколько применимо принятое приближение как в случае роста, так и в случае конденсации пузырьков. Здесь же приведены зависимости от температуры параметров k, ρ , с

Наполнитель	H ₂ O	H 2	90 % H + 10% N
$T^{o}_{\infty} K \text{ poct} = 5$	378	25	27
$3 < \frac{h}{D^2} $ poct ($\Delta T = 5$)	0,05	0,15	0,01
<- <u>h</u> >конденс (∆т=2)	0,1	1	0,2
$\frac{1}{1}$ $(\frac{dk}{dT})$	10 ⁻³	3.10 ⁻²	2.10 ⁻²
$\frac{1}{1}\left(\frac{d\rho}{d\rho}\right)$	-2.10	-3.10^{-2}	-2.10 ⁻²
ρ dT $\frac{1}{1}$ (dc _n)	3.10-4	7.10 ⁻²	0,1

Таблица 1

Значения параметров, приведенных в этой таблице, получены экспериментально в работах^{/3-6,9-11/}. Ввиду большой перспективности использования неон-водородных смесей для наполнения пузырьковых камер^{/11/} также приведены данные для смеси 90 мол % водорода и 10 мол % неона ^{x/}.

Как следует из таблицы 1, предположение о малости величины $3 < \frac{h}{R^3} >$ справедливо для случая роста пузырьков и, вообще говоря, теряет силу в случае конденсации. Дело в том, что величина перегрева ΔT , от которой зависит $3 < \frac{h}{R^3} >$, согласно соотношению (12), в процессе конденсации пузырьков существенно меньше, чем в процессе роста.

Что касается зависимости величин k, ρ , с от температуры, то для жидкого водорода она в 10 + 100 раз спльнее, чем для воды, так что при перегреве в 5⁰ на протяжении прилегающего слоя значения k, ρ , с меняются на 15 + 35% в случае жидкого водорода и только на 0,1 + 0,5% в случае воды. Следовательно, первоначальное предположение о постоянстве теплофизических параметров в прилегающем слое в случае жидкого водорода не оправдано.

Таким образом, анализ данных из таблицы 1 позволяет заключить, что имеются некоторые основания для разногласия теоретических расчётов скорости роста (конденсации) пузырьков с экспериментальными данными для водорода. Чтобы найти более удовлетворительное согласие между теоретическими и экспериментальными данными, необходимо решить более общую задачу: во-первых, без предположения о малости величины $\frac{3 h}{R^3}$ в уравнении (8); во-вторых, желательно учесть в исходных уравнениях зависимость теплопроводности, плотности и теплоемкости жидкости от температуры.

x/Данные взяты из работы/10/.

Зависимость теплофизических параметров \mathbf{k} , ρ и $\mathbf{c}_{\mathbf{p}}$ от температуры сильно усложняет решение исходной системы уравнений. Поэтому пренебрегаем зависимостью величин \mathbf{k} и ρ от температуры, так как в случае жидкого водорода она слабее, чем зависимость $\mathbf{c}_{\mathbf{p}}(\theta)$. Теплоем-кость как функцию температурь: представляем двумя членами ряда Тейлора:

$$c_{p}(\theta) = c_{p}(1 + \alpha\theta), \qquad (13)$$

(10)

(15)

где с_{р∞} - теплоемкость жидкости вне прилегающего слоя, а безразмерный параметр разложения ^α в случае жидкого водорода равен ≈ 0,35 при ΔT = 5 и T = 25[°]K.

Таким образом, вместо линейного уравнения (8) получаем квазилинейное уравнение:

$$(1 + a\theta) \frac{\partial\theta}{\partial\tau} = -\frac{\partial}{\partial h} \left[(1 + -\frac{3h}{R^3})^{\frac{2}{3}} \frac{\partial\theta}{\partial h} \right], \qquad (14)$$

причём величина <u>3b</u> может принимать произвольные значения. Решение этого уравнения осложняется наличием как нелинейного члена, так и неизвестной функции R(r). Однако свойства симметрии уравнения (14) позволяют упростить задачу. Действительно, как уравнение (14), так и уравнения (6-9) инвариантны при преобразовании:

$$\tau \rightarrow m^2 r$$
, $h \rightarrow m h$,

поэтому решение можно искать в виде $\theta = \theta(s)$, где $s = \frac{h}{2\sqrt{r}}$. Отсюда следует, что зависимость R(r) может быть представлена следующим образом:

$$R^{3} = 6 A \sqrt{r}$$
(16)

или, учитывая связь между переменными т и t,

$$R = \sqrt{12 D} \quad A \sqrt{t} \quad , \tag{16}$$

где A – не зависящая от r постоянная, которая определяется в результате решения системы уравнений (6,7,9,14). Подстановка $\theta = \theta$ (s) позволяет записать эти уравнения в виде:

÷

$$A = \frac{\sqrt{\pi}}{2} A_{o} - \frac{d\theta(0)}{ds} .$$
 (17)

$$2(1 + a\theta) s \frac{d\theta}{ds} = -\frac{d}{ds} \left[\left(1 + \frac{s}{A}\right)^{\frac{4}{3}} \frac{d\theta}{ds} \right]$$
(18)

$$\theta(0) = -1, \qquad \theta(\infty) = 0. \tag{19}$$

Уравнение (18) представляет собой обыкновенное квазилинейное дифференциальное уравнение, решение которого зависит от двух параметров а и А. Параметр а, по определению, должен быть мал по сравнению с единицей, поэтому решение уравнения (18) проше всего искать в виде ряда по а. В линейном приближении получаем:

$$\theta = \theta_1 + \alpha \theta_2 . \tag{20}$$

Так как параметр A также зависит от a, то, наряду с разложением (20), необходимо одновременно разлагать и его

$$\mathbf{A} = \mathbf{A}_{1} + \mathbf{a} \mathbf{A}_{2} \tag{21}$$

В результате разложения система уравнений (17)-(19) распадается на две системы. Система уравнений в нулевом приближении по а имеет вид:

$$A_{1} = \frac{\sqrt{\pi}}{2} A_{0} \frac{d \theta_{1}(0)}{d s}$$
,

$$2s \frac{d\theta_{1}}{ds} + \frac{d}{ds} \left[\left(1 + \frac{s}{A_{1}}\right)^{\frac{4}{3}} - \frac{d\theta_{1}}{ds} \right] = 0$$
(22)

$$\theta_1(0) = -1, \quad \partial \theta_1(\infty) = 0.$$

После того, как найдено решение θ_1 (s) и A_1 , определяется система уравнений первого приближения по а

$$A_{2} = \frac{\sqrt{\pi}}{2} A_{0} \frac{d\theta_{2}(0)}{ds} ,$$

$$2s \frac{d\theta_{2}}{ds} + \frac{d}{ds} \left[\left(1 + \frac{s}{A_{2}}\right)^{\frac{4}{3}} \frac{d\theta_{2}}{ds} \right] =$$

$$= -2s \theta_{1} \frac{d\theta_{1}}{ds} + \frac{d}{ds} \left[\left(1 + \frac{s}{A_{1}}\right)^{\frac{1}{3}} \frac{4s A_{2}}{3A_{1}^{2}} \cdot \frac{d\theta_{1}}{ds} \right],$$
(23)

 θ_1

Получившиеся уравнения довольно легко решаются, причём решения
$$heta_1$$

и $heta_2$ выражаются в квадратурах, которые имеют громоздкий вид и
поэтому не приводятся. После того, как найдены решения $heta_1$ и $heta_2$,

 $\theta_2(0) = \theta_2(\infty) = 0$

окончательные уравнения для определения параметров A₁ и A₂ имеют следующий вид:

$$-1 + \frac{6A_{1}^{2}}{\sqrt{\pi}A_{0}} \int_{0}^{1} \exp\left[3A_{1}^{2}\phi(x)\right] dx = 0, \qquad (24)$$

$$A_{2} = \frac{6A_{1}^{3}\int_{0}^{1} \exp\left[3A_{1}^{2}\phi(y)\right]dy}{\int_{y}^{1}(t^{-3}-1)dt\left[-1+\frac{6A_{1}^{2}}{\sqrt{\pi}A_{0}}\int_{t}^{1} \exp\left[3A_{1}^{2}\phi(z)\right]dz}{\sqrt{\pi}A_{0}}, (25)$$

где
$$\phi(x) \equiv \frac{-1 + 3x^2 - 2x^3}{x^2}$$
 и $A_0 = \frac{\Delta T \cdot k}{1 \cdot \rho' D \sqrt{\pi}}$ -фактор,

определяющий скорость пузырька при условиях, что a = 0 и $\frac{3 h}{R^3} << 1$. Получившиеся уравнения (24) и (25) решаются с помощью численного интегрирования.

Результаты численного решения представлены графически на рис. 1-3. В качестве независимой переменной удобно выбрать параметр

А₀ или А₁. Такой выбор позволяет естественным образом разбить область изменения А₀(А₁) на области, соответствующие росту и конденсации пузырьков, так что сразу видна роль рассматриваемых эффектов в обоих процессах.

На рис. 1 приведена зависимость величины $\frac{A_1}{A_0}$ как функции A_0 , которая характеризует влияние толщины прилегающего слоя на теоретическую скорость роста (конденсации) неподвижных пузырьков. Характер зависимости позволяет заключить, что:

б) поправка к скорости роста невелика и лежит в пределах 8+15%, поправка к скорости конденсации пузырьков значительна и достигает 40+150%.

Что касается поправки, возникающей при учёте зависимости теплоемкости жидкости от температуры, то она представлена на рис. 2 с помощью величины $\left(-\frac{A_2}{A_1}\right)$ как функции A_1 . Как видно из рисунка, поправка всюду отрицательна, причём возрастает с увеличением скорости роста (конденсации); в области роста она составляет 12 + 15%, в области конденсации – менее 10%.

Таким образом, суммарная поправка к скорости роста пузырька лежит в области 5 + 10%, поправка к скорости конденсации может достигать 150% и обусловлена, в основном, большой толщиной прилегающего слоя.

В связи с тем, что толщина прилегающего слоя играет существенную роль при рассмотрении динамики пузырьков в жидкости, на рис. 3 приводится зависимость величины $3 < \frac{h}{p^8} > = < \frac{r^8}{R^8} > -1$ как функции А. Ее значения вычислялись в соответствии с определением (левая сторона соотношения (12)), причём пунктирная кривая получена с помощью решения Плесета-Цвика (10-11) с учётом зависимости между А, и А, сплошная кривая получается, если воспользоваться решением системы уравнений (22) и соотношением (16). Из рис. 3 видно, что толщина прилегающего слоя мала в процессах роста пузырьков, причем, как и должно быть, обе кривые в этой области изменения А, совпадают. В случае конденсации величина 3<-h может принимать произвольные, вообще говоря, большие значения, причем решение Плесета-Цвика дает заниженные значения толщины прилегающего слоя. Итак, первоначальный вывод, сделанный на основании приближенного рассмотрения процессов роста и конденсации пузырьков в пузырьковых камерах, усиливается при более точном рассмотрении.

В заключение уместно сравнить полученные результаты с имеющимися измерениями скорости роста и рекомпрессии пузырьков в водородных пузырьковых камерах.

а). Экспериментальные данные о росте пузырьков при постоянном давлении $^{/3-6/}$ подтверждают, что R $\approx \sqrt{t}$, как это следует из общего вида уравнений (6-9,14).

б). Отличие теоретического и вычисленного экспериментально коэффициента пропорциональности в этой зависимости R (t), достигающее 30%^{/6/},

не может рассматриваться как доказательство несправедливости изложенного подхода, так как при вычислении экспериментального фактора не учитывалось изменение величин Т, р и с_р при адиабатическом уменьшении давления от Р_{max} до Р^{/12/}. Законы термодинамики определяют эти изменения следующим образом:

$$\delta T = \int_{P_{max}}^{P_{min}} \left(\frac{\partial T}{\partial p}\right)_{S} dp = \int_{P_{max}}^{P_{min}} \frac{T}{c_{p}} \left(\frac{\partial v}{\partial T}\right)_{p} dp, \qquad (27)$$

$$\delta \rho = \int_{P_{max}}^{P_{min}} \left(\frac{\partial \rho}{\partial p}\right)_{S} dp = -\int_{P_{max}}^{P_{min}} \left(\frac{\partial v}{\partial p}\right)_{T} + \frac{T}{c_{p}} \left(\frac{\partial v}{\partial T}\right)_{p}^{2} dp$$
(28)

$$\delta c_{p} = \int_{P_{max}}^{P_{min}} \left(\frac{\partial c_{p}}{\partial p}\right)_{s} dp = \int_{P_{max}}^{P_{min}} \frac{T}{c_{p}} \left[\left(\frac{\partial v}{\partial T}\right)_{p} \left(\frac{\partial c_{p}}{\partial T}\right)_{p} - c \left(\frac{\partial^{2} v}{\partial T^{2}}\right)_{p} \right] dp, (29)$$

где S -энтропия системы, v ≡ $\frac{1}{\rho}$ - удельный объем жидкости. Однако воспользоваться этими формулами трудно, так как необходимо знать зависимость плотности и теплоемкости от давления и температуры как в нормальной, так и метастабильной области. Игнорирование поправок (27-29) не позволяет сделать точное сравнение с теоретическими расчётами, так как нельзя в одном случае пренебрегать, а в другом учитывать эффекты одного и того же порядка.

в). Последнее замечание касается рекомпрессии пузырьков. Из нашего рассмотрения следует, что в этом случае толщина прилегающего слоя $\delta \approx R$. Однако в работе^{/7/} при исследовании рекомпрессии всплывающих пузырьков необоснованно предполагалось, что $\delta \ll R$. По-видимому, именно это обстоятельство является причиной большого несоответствия экспериментальных^{/6/} и теоретических^{/7/} данных о скорости рекомпрессии пузырьков в жидководородных пузырьковых камерах.

Важная роль всплывания пузырьков в процессе рекомпрессии несомненна, это подтверждается экспериментальными наблюдениями^{/6/}. В связи с этим было бы важно рассмотреть динамику всплывающих пузырьков с учётом результатов этой работы.

Автор считает своим приятным долгом выразить глубокую благодарность Л.Г.Заставенко и У.Кундту за стимулирующие обсуждения, а также Г.С.Воронову, Ю.П.Мерекову, Г.И.Селиванову и А.И.Филиппову за ценные замечания.

Литература

- (1.) M.S.Plesset, S.A. Zwick, J.Appl. Phys., <u>23</u>, 95 (1952); <u>25</u>, 493 (1954); <u>32</u>, 308 (1955).
- H.K.Forster, N. Zuber, J.Appl. Phys., <u>25</u>, 474 (1954).
 H.K.Forster, J.Appl. Phys., <u>25</u>, 1067 (1954).
- 3. Dergarabedian P., J.Appl. Mech, 75, 557 (1953).
- 4. L.Alvarez, CERN Symposiumon High Energy Physics, 2, 1 (1956).
- 5. B.N.Fabian, R.L.Place, W.A.Rileg, W.H.Sims and V.P.Kenney, Rev. Sci. Instr., <u>34</u>, 484 (1963).
- 6. G.Harigel, G.Horlitz, S.Wolff, Preprint DESY 67/14 (1967).
- 7. Ю.А.Александров, Г.С.Воронов, Н.Б.Делоне, ПТЭ, 1962, № <u>3</u>, 50; 1963, № 2, 41:
- 8. L.A.Skinner and S.G.Bankoff, Phys. Fluids <u>7</u>, 1 (1964); <u>8</u>, 1417 (1965).
- 9. Дж.Кэй, Т.Лэби, Таблицы физических и химических постоянных, М 1962.

10.V.P.Kenney, W.D.Shephard, W.B.Madden, E.A.Harrington,

Preprint ANL. 60439 (1967).

11.R.Florent, C.FGeles, G.Harigel, H.Lentz, F.Schmeisner, I.Tischhauser, G.Horlitz, S.Wolff, H.Filthuth, Preprint DESY, Oct. 1967.

12. Л.Д.Ландау, Е.М.Лифшиц, Статистическая физика. М 1964, стр. 69-73.

Рукопись поступила в издательский отдел 21 февраля 1968 года.

Рис. 1. Относительная поправка к теоретической скорости роста (конденсация) пузырька при точном учёте влияния толщины прилегающего слоя между пузырьком и жидкостью.

Рис. 2. Поправка к теоретической скорости роста (конденсации) пузырька, обусловленная зависимостью теплоемкости жидкости от температуры.

Рис. 3. Отношение объема прилегающего слоя к объему пузырька в процессах роста и конденсации пузырьков. Пунктирная линия соответствует решению Плесета-Цвика, сплошная решению, полученному в данной работе.