

S. Contraction of the

P13 · 3653

1967.

3.В.Крумштейн, В.И.Петрухин, Л.И.Пономарев, Ю.Д.Прокошкин

ИССЛЕДОВАНИЕ ЗАХВАТА П-МЕЗОНОВ ВОДОРОДОМ В ВОДОРОДОСОДЕРЖАЩИХ ВЕЩЕСТВАХ P13 - 3653

3.В.Крумштейн, В.И.Петрухин, Л.И.Пономарев, Ю.Д.Прокошкин

ИССЛЕДОВАНИЕ ЗАХВАТА П⁻-МЕЗОНОВ ВОДОРОДОМ В ВОДОРОДОСОДЕРЖАЩИХ ВЕЩЕСТВАХ

Направлено в ЖЭГФ

1. В ведение.

Ядерный захват остановившихся отрицательно заряженных мезонов в конденсированных веществах во многом определяется предшествующими ему мезоатомными (мезомолекулярными) процессами. Исследование этих процессов, помимо самостоятельного интереса, имеет и большое практическое значение, поскольку элементарные реакции распада и взаимодействия отрицательных частиц (мезонов, антипротонов, гиперонов) нередко приходится изучать при остановке этих частиц в веществе со сложной химической структурой. Интерпретация таких экспериментов требует знания вероятностей захвата частиц ядрами атомов, входящих в состав вещества.

Вероятность атомного захвата µ⁻ -мезонов, остановившихся в веществе, в большинстве случаев оказывается примерно пропорциональной зарядам ядер Z в согласии с "Z-законом" Ферми-Теллера^{/1/}. Все наблюдавшиеся отклонения^{/2-4/} от этого закона происходят в сторону более слабой зависимости от Z.

Иная картина имеет место в случае остановки в веществе *п*-мезонов. Исследования поглошения *п*-мезонов в ЦГ показали, что вероятность захвата *п*-мезона литием в этом соединении существенно меньше, чем это следует по *г* Z -закону /5/. При изучении поглошения *п*-мезонов в водородосодержащих веществах было обнаружено, что вероятность захвата *п*-мезонов водородом резко подавлена /6/. Для объяснения этого эффекта была предложена модель перехвата *п*-мезонов /6/, специфическая для водородосодержащих веществ. Однако, выполненные позже количественные исследования /8-10/ показали, что резкое подавление захвата *п*-мезонов ядрами химически связанного водорода

обусловлено иным механизмом, который описывается моделью "больших мезомолекул"/12-14/. Согласно этой модели, замедлившийся "-мезон переходит из непрерывного спектра в дискретный на уровни, общие для всей молекулы. Вероятности захвата "-мезона протоном и ядром Z определяются мезомолекулярной стадией процесса, когда "-мезон переходит с общих мезомолекулярных уровней на разделенные уровни мезоатомов Рт и ZT.

Z - зависимость вероятности W захвата п⁻-мезонов ядрами водорода, входящего в состав бинарных химических соединений типа Z_mH_n(LiH, CH₂ и др.) была изучена в области Z≤ 8 ^{/8,9/}. При этом было найдено, что приведенная вероятность P, определенная как

$$P = -\frac{m}{n} W, \qquad (1)$$

следует зависимости

$$P = Z^{-3}$$
, (2)

которая позже нашла объяснение в рамках модели "больших мезомолекул". Целью настоящего исследования/13/, выполненного на синхроциклотроне ЛЯП ОИЯИ, являлось определение зависимости вероятности . Р от Z в области Z > 8.

2. Измерения

Схема эксперимента и процедура измерений была описана ранее/7-10/. п⁻-мезоны останавливались в мишени из исследуемого водородосодержащего вещества, помещенной между двумя черенковскими спектрометрами полного поглощения. При помощи спектрометров регистрировались два у -кванта, испускаемые при захвате п⁻-мезонов ядрами водорода:

$$\pi^{-1} + \mathbf{p} \rightarrow \pi^0 + \mathbf{n}, \quad \pi^0 \rightarrow 2 \quad y$$

Основным источником фона являлся процесс перезарядки π^- -мезонов на лету на сложных ядрах, входящих в состав вещества мишени (перезарядка π^- мезонов на сложных ядрах подавлена более, чем в 10⁴ раз /14,15/). Поправка,

связанная с вычитанием этого фона, составляла 2% для LiH и увеличивалась до 25% с ростом Z. . Погрешность определения этой поправки ограничивала точность измерений в области больших Z .

Измерения величин W были выполнены для ряда гидридов $Z_m H_n$ (в том числе и для исследованных нами ранее ${}^{(8,9')}$) и более сложных водородосодержаших веществ типа $Z'_k Z''_l H_n$ (см. табл. 3). Мишени имели примерно одинаковую тормозную способность, эквивалентную 3 г/см² углерода. Химически активные гидриды $B_{10}H_{14}$, $N_2 H_4$, NaH, CaH₂ были заключены в герметические алюминиевые контейнеры, толщина стенок которых по пучку составляла около 0,5 г/см². Некоторые из исследованных веществ содержали посторонние примеси: $B_{10}H_{14}$ (примесь других боргидридов – 2,5%), NaH (примесь NaOH,, Na₂ CO₃ -5%), CaH₂ (примесь CaO и CaCO₃ - 10%), N₂H₄ (примесь - 0,7%, в том числе 0,36% воды), KBH₄ (примесь KOH и NaOH - 7%) и NaBH₄ (примеск NaBO₂ и NaBH(COH₃)₃ 3%). Остальные вещества имели квалификацию "химически чистый" или "чистый для анализа".

Вероятности W были определены относительным методом путем сравнення скоростей счета пар у-квантов, испускаемых из исследованных мишеней и мишени из LiH. В полученные отношения скоростей счета были внесены небольшие поправки, учитывающие различие тормозных способностей и формы мишеней. При определении абсолютных значений вероятностей W отношения вероятностей нормировались на величину W_{LiH}, которая принималась равной усредненному по данным.^(8,16,17) значению (3,5±4)10⁻³.

3. Результаты измерений

<u>Гидриды.</u> Вероятности W были определены для гидридов элементов Li, B, C, N, O, Na и Ca. Полученные результаты приведены в таблице 1. Как видно из рис.1 для $Z \leq 8$, полученные данные хорошо описываются зависимостью (2). Однако в области больших значений Z соотношение (2) нарушается. В гидридах NaH и CaH₂ π^- -мезоны захватываются водородом значительно эффективнее, чем это следует из формулы (2). Возможные причины этого нарушения обсуждаются ниже.

Зещество	HI LIH	B10H14	CH	N ₈ H ₄	H ₂ O	HaH	Celf
Z	3	5	9	2	Ø	п	20
a/ m	H	I.ª4	I	5	N	I	2
W, 10 ⁻³	35 ± 4	I2,6 ± 1,2	5,I ± 0,6	5,9 ± 0,6	3 ,5 ± 0,6	2,4. ±0,4	2,5 ± 0,3
ي. تار	I,26 [±] 0,I4	I,44±0,I5	I,28 [±] 0,15	I, 30±0, I3	1,12 [±] 0,20	3,6 ±0,6	II,0± I,3
Ł расч_ формула (7)	1 I.4	I,3	1,2	I,I	6*0		
b ₁	I,26 [±] 0,I4	I,03±0,I0	I,28 [±] 0,I5	0,65±0,07	0,56±0,I0		

Таблица 1

Углеводороды. Результаты измерений вероятности W для ряда углеводородов приведены в таблице 2. Эти результаты подтверждают сделанный нами ранее^{/8/} вывод о том, что вероятность захвата *п* -мезонов связанным водородом не аддитивна. Отношение величин P для CH и CH₂ было найдено равным 0,77⁺0,08^{/8/}. Этот результат был подтвержден в последующих работах, где для указанного отношения были получены 0,78⁺0,09^{/16/} и 0,61⁺0,08^{/17/}.

Сложные водородосодержащие соединения. Исследованные нами вещества типа Z'_k Z"_lH_n можно разделить по характеру связей атомов водорода с атомами Z' н Z" на две группы: вещества, в молекулах которых связи атомов водорода с атомами Z' и Z" одинаковы (табл. 3) и различны (табл. 4) В соединениях первой группы (табл.3) водород связан с углеродом и кислородом ковалентной связью. В соединениях второй группы (табл. 4) водород связан только с легкими атомами молекулы (бромом и азотом), причем эта связь ковалентна, а подструктуры (ВН₄)⁻ и (NH₄)⁻ связаны с более тяжелыми атомами связью ионного типа, т.е. без общих электронов^{/20/}.

4. Обсуждение результатов.

В модели "больших мезомолекул" вероятность W захвата "--мезона водородом в гидридах равна

Приведенная вероятность Р при этом определяется как

$$P_{a}^{\prime}\left(\frac{m}{n}+\frac{1}{Z}\right)W.$$
(5)

Вывод формулы (4) основан на двух предположениях /18/

1. Вероятность посадки мезонов на различные уровни системы $Z_m \pi^- H_n$ пропорциональна плотности электронного облака, которая существовала в окрестности этих уровней до захвата мезона. Это утверждение эквивалентно предћоложению о справедливости "Z -закона" на стадии захвата в дискретный спектр, что отражено в структуре множителя n/(mZ+n) в формуле (4). (Отметим, что на общие уровни захватывается сравнительно небольшая доля остановившихся мезонов (=n/mZ). Основная же часть мезонов захватывается сразу на уровни тяжелого атома Z).

Таблица 2

and the second se				and the second sec	
Вещество	СН	C ₈ H ₈	C, H,	CH 2	C H 7 16
8/2	I,00	I,00	I,I4	2,00	2,29
W, 10 ⁻³	5,I±0,6	3,5-0,4	5,1±0,5	13,2±1,3	14,6 [±] 1,3
m W/%W CH.	0,77±0,08	0,53-0,08	0,68±0,07	I	0,98 [±] 0,08
aL	I,28±0,15	1,00 [±] 0,11	1,17±0,12	1,90±0,19	1,90 [±] 0,19
b _L	1,28±0,15	1,00 <u>t</u> 0,11	1,03±0,10	0,95 [±] 0,10	0,83 [±] 0,008

Таблица 3

Вещество	CH 3 OH	C ₂ H ₅ OH	C3H60	с, н, оон
W, 10 ⁻³	7,5 ± 0,8	8,I ± 0,9	6,6 ± 0,7	4,2 ± 0,5
расч, , 10 с. формула (9))	7,0 ± 1,0	7,7 ± 1,0	6,7 ± 1,0	4,9 ± 0,7

Таблица 4

Вещество	Na(BH ₄)	K(BH ₄)		(NH ⁺) رو	(NH ₄)Br	f([*] HN)
W, 10 ³	8,4 ± 0,9	5,9 ± 1,0	4,6 ± 0,7	3,2 ± 0,6	I,6 ± 0,2	I,2 ± 0,2
Wa''(z'H4) akcn.	н	0,70 ± 0,09	0,55 ± 0,07	0,38 ± 0,06	0,19 ± 0,02	0,14 ± 0,02
W Na(BH)	F	0,72 ± 0,07	0,51 ± 0,05	0,36 ± 0,04	0,22 ± 0,02	0,I6 ± 0,02
формула (10)) ^в г	I,05 ± 0,II	I,03 ± 0,II	I,I0 ± 0,I6	I,I0 ± 0,20	0,90 ± 0,13	0,94 ± 0,16

2. Ядро водорода может захватить только те мезоны, которые вначале попали на общий мезомолекулярный уровень молекулы. Вероятность этого процесса пропорциональна Z⁻² и определяется радиационными переходами с общих уровней системы Z^π H иа разделенные уровни мезоатомов р^π и Z^π.

Коэффициент а_L отражает возможные отклонения от "Z -закона", изменение условий посадки п -мезона по мере застройки электронных оболочек атомов, а также особенности химического строения молекулы. Индекс L указывает на период таблицы Менделеева, к которому принадлежит атом Z .

Вероятность $\mathbb{W}_{Z_m H_n}$ была определена нами так, что для реакции (3) в чистом водороде $\mathbb{W}_{H_2} = 1$. В этом случае (m=0) коэффициент a_1 равен единице. Если влияние указанных выше эффектов на величину a_L для второго периода невелико, то $a_1 \sim a_{11} \sim 1$. Действительно, как видно из таблицы 1, для элементов второго периода таблицы Менделеева ($Z \leq 8$), коэффициент a_{11} отличается от единицы незначительно.

Однако, при переходе к третьему и четвертому периодам (Na и Ca) коэффициент a_{I} меняется скачком: $a_{III} = 3.6 \pm 0.6$, $a_{IV} = 11.0 \pm 1.3$, т.е. примерно в три раза

Оценим величины _L для соединений водорода с элементами второго периода, учитывая характер химической связи в этих соединениях. Они зависят от плотности *р* распределения валентного электрона между атомами H и Z :

$$\rho = (1 - \sigma)\rho_{\rm p} + \sigma \rho_{\rm p}. \tag{6}$$

Здесь р и р -электронная плотность, обусловленная ковалентной и ионной связями, соответственно; σ -степень ионности связи /20/, которая равна вероятности найти оба электрона у того из атомов Z или H , электроотрицательность которого больше.

Доля электронной плотности для двух электронов связи, которая сосредоточена вблизи атома Н и между ядрами Н и Z , равна коэффициенту формуле (4):

ж) Одна из возможных причин такого поведения а может быть связана с изменением условий захвата я -мезона молекулой в области валентных электронов, которые могут зависеть, например, от числа уровней мезомолекулы N₁ = 2L² (N_n : N_n : N₁ = 1:2,2:4).

$$a_{L} = 2\sigma + (1-\sigma)\left(1 + \frac{8^{2}}{1+s^{2}}\right) , \qquad (7)$$

где s - коэффициент перекрывания атомных волновых функций, который для всех соединений равен примерно 0,3^{/20/}. Степень ионности *о* можно вычислить, используя ряд электроотрицательности элементов^{/20/}. При этом, если электроотрицательность водорода меньше, чем атома Z (как в молекуле воды H₂O), то первый член в формуле (7) следует опустить. Результаты вычислений а_L по формуле (7) приведены в таблицах 1 и 2. В целом они согласуются с экспериментальными значениями.

Исключение составляют предельные углеводороды CH_2 и C_7H_{16} . Одной из причин этих отличий в ряду углерода может быть рост (в 1,5 раза) вклада р-состояния в гибридную орбиталь при переходе от ненасышенных соединений к насышенным⁽²⁰⁾. Другая возможность состоит в следующем: при выводе формулы (4) предполагалось, что мезомолекулярная орбиталь, с которой возможен переход на уровни мезоатома $p\pi^-$, связывает атомы H и Z только попарно. Если, однако, предположить, что мезомолекулярная орбиталь принадлежит всем атомам молекулы, то множитель Z^{-2} в формуле (4) нужно заменить на $n/(mZ^2 + n) \approx n/mZ^2$ Тогда соотношение (4) примет вид:

$$W = b_{J_{n}} \frac{n}{mZ + n} \frac{n}{mZ^{2} + n}$$
(8)

Как видно из таблиц 1 и 2, коэффициент $b_L(-a_L m/n)$ в случае углеводородов примерно равен единице и несколько слабее, чем a_L , зависит от вида органического соединения, но заметно изменяется внутри второго периода (кроме декаборана, свойства которого близки к органическим). В случае органических соединений зависимость (8) удовлетворительно описывает экспериментальные результаты (таблица 2). Анализ таблиц 1 и 2 показывает, что первая гипотеза, приводящая к формуле (4), предпочтительнее, и в дальнейшем мы будем использовать только ее.

Зависимость приведенной вероятности ^р (формула (5)) от **2** представлена на рис. 1. Сплошная прямая соответствует значению $a_{H} = 1,29$, которое получено усреднением коэффициента a_{L} по второму периоду (см. табл. 1). Пунктирная линия соответствует значению $a_{L} = 1$ и проходит через точку P = 1 для водорода.

Для сложных соединений вида $Z'_{k} Z''_{\ell} H_{n}$ с ковалентной связью формула (4) принимает вид^{/14/}:

$$W = \frac{a_{L}^{\prime} k (Z')^{-2} + a_{L}^{\prime} \ell (Z')^{-2}}{k Z' + \ell Z'' + n}$$
(9)

Как следует из таблицы 3, результаты вычислений по этой формуле удовлетворительно согласуются с экспериментальными данными.

В соединениях вида $(Z'H_4)Z''$ (таблица 4) атом Z'' связан с радикалом $(Z''H_4)^{-1}$ ионной связью /20/ и не участвует в процессе перехвата, т.е. a'' = 0. Он влияет только на вероятность первоначальной посадки. В этом случае формула (9) примет вид k = l = 1, n = 4):

$$W = \frac{4a_{L}(Z')^{-2}}{Z'^{4} + (Z'+4)}$$
(10)

Из последней формулы следует, что величина 1/W должна линейно зависеть от Z^{**}. Результаты экспериментов (рис. 1, 2) подтверждают это заключение. Это означает, что при первоначальной посадке ^{**} Z^{**} – закон^{**} действительно выполняется, и еще раз свилетельствует о правомерности принятого нами общего подхода.

5. Выводы.

Проведенный выше анализ полученных в настоящей работе экспериментальных данных на основе модели "больших мезомолекул" позволяет сделать следующие выводы:

- Модель "больших мезомолекул" хорошо описывает полученные экспериментальные данные.
- Вероятность захвата "-мезонов водородом в гидридах ZH сильно изменятется при переходе от периода к периоду таблицы Менделеева.
- 3. Вероятность захвата # -мезонов водородом в водородосодержащих веществах существенно зависит от типа химической связи. Это открывает возможность использования реакции (1) не только для различэния свободного и связанного

водорода^{/19/}, но и для изучения характера химических связей в водородосодержащих веществах.

4. Первоначальная посадка # -мезонов следует Z -закону".

В заключение пользуемся случаем поблагодарить С.С. Герштейна за полезные обсуждения.

Литература

- 1. E. Fermi, E. Teller. Phys.Rev., 72, 399 (1947).
- 2. 3.S. Baijal, J.A. Diaz, S.N. Kaplan. A.V. Pyle. Nuovo Cim. 30, 711 (1963).
- В.Д. Бобров, В.Г. Варламов, Ю.М. Грашин, Б.А. Долгошени, В.Г. Кириллов-Угрюмов, В.С. Розанов, А.В. Самойлов, С.В. Сомов. ЖЭТФ, <u>48</u>, 1197 (1965).
- 4. В.Г. Зинов, А.Д. Конин, А.И. Мухин. Ядерная физика, 2,859 (1965).
- 5. M.B. Stearns. M. Stearns, L. Leipuner. Phys. Rev., 108, 445 (1957).
- 6. W.K.H. Panofsky, A.L. Aamodt, J. Hadley. Phys. Rev., 81, 565 (1951).
- 7. А.Ф. Дунайцев, В.И. Петрухин, Ю.Д. Прокошкин, В.И. Рыкалин. ЖЭТФ, <u>42</u>, 1680 (1962).
- 8. V.I. Petrukhin, Yu.D. Prokoshkin. Nuovo Cim., 28, 99 (1962).
- 9. A.F. Dunaitsev, V.I. Petrukhin, Yu.D. Prokoshkin. Nuovo Cim., 34, 521 (1964).
- 10. В.И. Петрухин, Ю.Д. Прокошкин. ДАН, 160, 71 (1965).
- 11.Л.И. Пономарев. Ядерная физика, 2, 723 (1965).
- 12. Л.И. Пономарев. ОИЯИ, препринт №4-3072 (1966).
- 13. З.В. Крумштейн. ОИЯИ, дипломная работа (1965).
- 14. V.I. Petrukhin, Yu.D. Prokoshkin, Nucl. Phys., 54, 414 (1964).
- 15. В.И. Петрухин, Ю.Д. Прокошкин, А.И. Филлипов. Ядерная физика, 5, 327 (1967).
- 18. M. Chabre, P. Depommier, J. Heitze. Phys.Lett., 5, 67 (1963).
- D. Bartlett, S. Devons, S.L. Meyer, J.L. Bossen. Phys.Rev., 136, 1452 (1964).
- 18. Л.И. Пономарев. Ядерная физика, 6, вып.2, 389 (1967).
- В.И. Петрухин, Л.И. Пономарев, Ю.Д. Прокошкин Химия высоких энергий, <u>1</u>,3, 283 (1967).
- 20. Ч. Коулсон. Валентность. Мир, М., 1965.

Рукопись поступила в издательский отдел

30 декабря 1967г.