F-612

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

PROPNS

1967.

All Martines

Дубна

P13 · 3340

Н.А. Головков, К.Я. Громов, Ю.Н. Денисов, Б.С. Джелепов, Ж. Желев, С.А. Ивашкевич, В.М. Лачинов, Б. Махмудов, В.И. Прилипко Ю.И. Сусов, В.Г. Чумин, П.Т. Шишлянников

МАГНИТНЫЙ АЛЬФА-СПЕКТРОГРАФ С ДВОЙНОЙ ФОКУСИРОВКОЙ

P13 - 3340

Н.А. Головков, К.Я. Громов, Ю.Н. Денисов, Б.С. Джелепов, Ж. Желев, С.А. Ивашкевич, В.М. Лачинов, Б. Махмудов, В.И. Прилипко Ю.И. Сусов, В.Г. Чумин, П.Т. Шишлянников

МАГНИТНЫЙ АЛЬФА-СПЕКТРОГРАФ С ДВОЙНОЙ ФОКУСИРОВКОЙ

5/18/2 ND

Основным методом изучения тонкой структуры альфа-спектров является метод отклонения альфа-частиц в магнитном поле. Лучшими магнитными спектрографами являются спектрографы, в которых используется принцип двойной фокусировки на угол $\pi \sqrt{2^{-1-3/2}}$. Такие приборы позволяют при хорошей разрешающей способности получать относительно большую светосилу.

Данная работа посвящена описанию большого магнитного альфа-спектрографа, построенного в Лаборатории ядерных проблем Объединенного института ядерных исследований.

При сооружении альфа-спектрографа за основу была принята конструкция большого магнитного альфа-спектрографа, построенного в 1958 г. в Институте атомной энергии в Москве^{/3/}. Учитывая опыт эксплуатации этого прибора, мы внесли в него некоторые конструктивные изменения. Более точно была рассчитана топография магнитного поля спектрографа. При подгонке топографии был использован более современный метод измерения магнитных полей - протонный резонанс.

1. Описание альфа-спектрографа

Магнитопровод электромагнита спектрографа типа "Двойной гриб" собран из трех частей: цилиндрического сердечника и двух "шляп" (рис. 1,2). Диаметр магнита 3600 мм, общий вес около 80 т, ширина полюсов 700 мм, зазор между полюсами 350 мм. На полюсах укреплены профилированные накладки, выполненные

аналогично полюсным накладкам прибора, описанного в работе^{/3/}. Возбуждаюшая обмотка электромагнита изготовлена из медной трубки сечением 235 мм². Обмотка имеет 192 витка и охлаждается дистиллированной водой. Питание обмотки производится стабилизированным постоянным током от мотор-генератора. Стабильность тока ±0,015% обеспечивается стандартным стабилизатором БТ-4. Ток в обмотке может меняться в пределах от 140 до 450 а, что соответствует напряженности магнитного поля от 1,2 до 3,5 кз. При радиусе равноресной орбиты г_о = 154 см такое поле обеспечивает регистрацию альфа-частиц с энергиями от 2 до 14 Мэв.

Схема вакуумной камеры и вакуумной системы представлена на рис. 3. Камера из нержавеющей стали (1) объемом 800 л состоит из двух половин, соединенных посередине. Создание вакуума (~ 2.10⁻⁵ мм Нg) осуществляется форвакуумным насосом ВН-1 (11) и диффузионным агрегатом (9) типа ВА-5-4. Радиоактивный источник (12) и кассета с фотопластинками (3) вводятся в камеру без нарушения вакуума с помощью вакуумных шлюзов (6). Вакуумный шлюз для фотопластинок рассчитан на постановку в нем двух кассет таким образом, чтобы во время экспонирования второй кассеты первая, экспонированная, могла быть быстро заменена третьей. Такой шлюз позволяет исследовать альфа-распад изотопов, период полураспада которых порядка 10 мин. Кассета изготовлена так, что постановка ее в шлюз и обратное извлечение производится при дневном свете.

Для регистрации альфа-частиц применяются фотопластинки с эмульсией типа А-2 толщиной 50 мк. Для одной экспозиции в кассету устанавливается четыре фотопластинки размером 9 x 12 см² (общая длина – 48 см).

Пучок альфа-частия ограничивается диафрагмой (13), установленной в том месте, где соединяются обе половины камеры. Высоту и ширину окна диафрагмы можно изменять снаружи, без нарушения вакуума.

Чтобы во время экспозиции иметь воэможность измерять магнитное поле в зазоре магнита, в вакуумную камеру на резиновом уплотнении вставляется латунный стакан (8), в который помещается датчик магнитного поля (7).

2. Устройство для измерения магнитного поля

Одной из центральных проблем при создании магнитного спектрографа является проблема формирования необходимого магнитного поля. В данном случае поле должно обладать осевой симметрией и убывать с увеличением расстояния от оси симметрии по определенному закону. Специально был разработан и построен "координатомер" - устройство, с помощью которого датчик магнитного поля мог быть помещен в любую точку зазора магнита. Схема устройства показана на рис. 4. На магните располагается диск (8) с прикрепленной на его боковой поверхности зубчатой рейкой и с осевой втулкой в центре (7). На осевую втулку надевается несущая конструкция (4), на которой крепятся механизмы перемешения датчика магнитного поля по высоте, радиусу и азимуту. Движение по азимуту осуществляется мотором (5), вращающим шестерню (9). Диск (8) был установлен так, что его ось совпадала с осью магнита с точностью 0,5 мм. Датчик магнитного поля перемещался: по радиусу ступенями по 5 мм с точностью 0,1 мм, по высоте ступенями по 2 мм с точностью 0,1 мм и по азимуту ступенями по 3 градуса с точностью 0,1 градуса. Все перемещения осуществлялись с помощью электромоторов. Управление моторами производилось с пульта.

Необходимую точность (0,01%) измерения напряженности магнитного поля в диапазоне 1200-3500 э можно обеспечить, используя ядерный магнитометр. Однако большие размеры магнита альфа-спектрографа и неоднородность поля не позволили применить в качестве измерителя промышленный образец ИМИ-2. Поэтому при использовании принципа построения магнитометров по автодинному методу был изготовлен прибор, подобный описанному в^{/4/}, состоящий из двух блоков. В одном, небольшом по размерам блоке-датчике, помешаемом в магнитвое поле, размещен автодинный детектор, первый каскад низкочастотного усилителя резонансного сигнала поглошения и некоторые другие элементы схемы прибора. Остальная часть магнитометра – блок-индикации, содержащий усилитель, электронно-лучевую трубку и источник питания, расположена на расстоянии 20 м от датчика и соединена с последним многожильным кабелем. В качестве рабочего вещества используется 0,1-0,2 N раствор Fe (NO₈)₈ в воде (ЯМF на протонах). Внутренний диаметр ампулы равен ² 2 мм.

Частота автодина грубо изменяется малогабаритным воздушным конден-

сатором специальной конструкции, а точно – варикапом. Перестройка частоты, изменение амплитуды модулирующего поля, установка требуемого уровня генерации осуществляются органами управления, расположенными в блоке индикации. Частота автодина измеряется электронно-счетным частотомером, соединенным с датчиком кабелем и расположенным, как и блок индикации, на расстоянии 20 м от измеряемого поля.

Используемый измерительный комплекс позволяет измерять напряженность магнитного поля с точностью не хуже 0,01% при неоднородности поля 0,5 %/см. Весь процесс измерения осуществляется дистанционно.

3. Формирование магнитного поля

Магнитное поле, необходимое для двойной фокусировки расходящегося пучка заряженных частиц на угол $\pi\sqrt{2}$, должно обладать осевой симметрией и плоскостью симметрии. Зависимость величины магнитного поля от радиуса выражается формулой:

$$\Pi_{z}(r, z)|_{z=0} = \Pi_{0}(I + h_{1}\eta + h_{2}\eta^{2} + h_{3}\eta^{3} + \dots),$$
(1)

где $\eta = \frac{r - r}{r_0}$, r_0 -радиус равновесной орбиты, h, -постоянные коэффициенты.

В спектрометрах с железом в большинстве случаев применяются камеры, позволяющие использовать невысокие, но широкие пучки. Для таких слектрометров необходимо поле, которое давало бы фокусировку, не зависящую от горизонтальных углов вылета частии. Было доказано, что такое поле в разложении (1) должно иметь $h_1 = -1/2^{15/7}$ и $h_2 = 1/8^{16/7}$. Позднее был проведен расчет следующих коэффициентов h_1 . Верстером были вычислены коэффициенты h_3 и h_4 /7/, Саулитсм h_5 /8/, Иродовым h_6 и h_7 /9/. Надо заметить, что трудоемкость расчета коэффициентов h_1 сильно возрастает с увеличением порядка приближения. Только использование электронно-вычислительной техники позволило провести расчет h_8 и h_9 /10/. Таким образом, в настоящее время в разложении (1) известно девять коэффициентов h_1 :

$$h_1 = -\frac{1}{2}$$
, $h_2 = \frac{1}{8}$, $h_3 = \frac{1}{16}$, $h_4 = -\frac{31}{256}$, $h_5 = \frac{59}{512}$,
 $h_8 = -\frac{45}{512}$, $h_7 = \frac{111}{2048}$, $h_8 = -0.048$, $h_8 = 0.069$.

Из работы $^{/10/}$ следует, что если экспериментально удастся получить магнитное поле, соответствующее разложению (1) с учетом h $_8$ и h $_9$, то траектории, для которых горизонтальные углы $a = \pm 17^{\circ}$, а вертикальные $\beta = 0$, будут давать при угле $\pi\sqrt{2}$ изображение точечного источника размером $< 10^{-5}$ г (разрешающая способность по $H\rho < 10^{-3}$ %).

Первым шагом получения нужного поля было помещение в зазор магнита специальных профилированных накладок (рис. 1, п. 5), форма которых была рассчитана аналитически авторами работы /3/. Из рис. 5 следует, что одни накладки обеспечивают поле, близкое к расчетному в области г ≈ 140-159 см (при г_о = 154 см). Для увеличения этой области на внутренние и внешние края наклалок привинчивались железные шиммы (рис. 6). Наиболее выгодная форма шимм находилась экспериментально, путем последовательного их фрезерования и последующих измерения магнитного поля. Результаты работ по шиммированию поля приведены на рис. 7-10. На рис.7 демонстрируется неоднородность магнитного поля вдоль окружностей с раднусами 130, 140, 154 и 160 см при разных значениях напряженности магнитного поля. По оси ординат отложено отклонение величины напряженности магнитного поля для данного ф от величины напряженности, измеренной при ф = 144⁰. По оси абсцисс отложены значения угла поворота координатомера ф. Измерения производились в зазоре магнита без вакуумной камеры. Точки соответствуют случаю, когда напряженность магнитного поля на окружности радиуса 154 см равна 1618 э. Пон таком поле можно анализировать альфа-частицы, энергия которых 🖕 2.99 Мэв. Крестики соответствуют случаю, когда И_{го} =164 = 2388 э (К_α ≈ 6,5 Мэв), квадратики - Н_{г, =154} = 3210 э (F = 11,8 Мэв). Стрелки показывают максимальный диапазон углов ф, который может быть использован при т. = 154 см. Для Н_{г =154} = 2388 э неоднородность в этом диалазоне с находится в прелелах 0,06%, для H, = 154⁼ 1618 э - в пределах 0,12%, для H, = 184⁼ 3211 э - в пределах 0,08%.

На рис. 8 показано отклонение экспериментальных значений ($\frac{H(r)}{H_{r}}$)эксп. от теоретических ($\frac{H(r)}{H_{r}}$)_{теор}при различных значениях ϕ при H_{r} = 154 По оси ординат отложено [($\frac{H(r)}{H_{r_0}}$)_{теор}($\frac{H(r)}{H_{r_0}}$)_{эксп}]= $\frac{\Delta H(r)}{H_{r_0}}$ По оси абсиисс отложены значения радиуса. Измерения проводились без вакуумной камеры. Из рисунка видно, что в области r = 124-165 см на различных углах ϕ поле спадает одинаково с точностью в 0,03%. Вакуумная камера была сделана из нержавеющей стали.

Экспериментально было установлено влияние материала камеры на распределение магнитного поля. Для этой цели измерения топографии поля в медианной плоскости производились через боковые люки камеры, расположенные при

 $\phi = 66^{\circ}$ и $\phi = 216^{\circ}$. В дальнейшем шиммирование производилось с таким расчетом, чтобы после установления камеры в зазоре магнита топография поля как можно ближе приближалась к теоретической. На рис.9 для сравнения приведены две кривые $\frac{\Lambda H(r)}{H_{r_e} = 154}$ волученные при $\phi = 84^{\circ}$ для случая с камерой (кривая с точками) и без камеры (кривая с крестиками). Обе кривые получены при $H_{r_e} = 154$ = 2388 э. Кривая, полученная с камерой, значительно ближе к теоретической. Максимальное отклонение ≈ 0,035%.

Для случая, когда в зазоре магнита не было вакуумной камеры, при ¢ = 129° и 219° исследовалось изменение топографии магнитного поля в зависимости от величины напряженности магнитного поля (рис. 10). При изменении напряженности на равновесной орбите от 1619 до 3210 э максимальное изменение топографии не больше 0,04%.

Положение мелианной поверхности оценизалось по положению минимального значения напряженности магнитного поля при передвижении датчика магнитного поля по высоте ($\phi = \text{Const}$ и r = Const). Положения минимумов располагаются от средней плоскости зазора z = 0 на расстояниях, меньших 2 см, и не зависят заметным образом от величины В и от присутствия камеры.

Исследования зависимости H(r) показали, что максимальный диапазон радиусов, который может быть использован, r = 124-166 см. В таком случае расходящийся пучок частиц будет выглядеть так, как он представлен на рис.11. Из рисунка легко определить диапазон используемых углов ¢ для r = 130, 140, 154 и 160 см. На рис. 7 эти диапазоны ограничены стрелками. В пределах этих диапазонов проводилась максимально возможная подгонка поля к расчетному.

4. Исследование фокусирующих свойств спектрографа

Исследование свойств спектрографа производилось с помощью радиоактивного источника ²⁴⁴ см. приготовленного напылением в вакууме и имевшего размеры 0,5 x 10_{мм}².

В первых опытах кассета с фотопластинками устанавливалась под углом к радиусу г. = 154 см. а источник-на окружность этого же радиуса. Дви-46[°] жением источника по радиусу и вдоль равновесной траектории определялось то его положение, при котором полуширина альфа-линии, расположенной в области пересечения фотопластинки с окружностью радиуса го = 154 см, была минимальной (≈ 5 кэв). Это положение в дальнейшем являлось началом отсчета ("О"). После этого с помощью подвижных диафрагм исследовалась зависимость разрешающей способности от начальных углов вылета альфа-частиц. Отсутствие достаточно сильного источника не позволило провести детальное исследование. Были только определены условия, при которых разрешение и светосила являлись достаточными для работ по обнаружению и изучению тонкой структуры альфа-спектров редкоземельных элементов. Минимальная полуширина линии, полученная в этих опытах, составляла ≈ 3,5 кэв при телесном угле ≈ 4.10⁻⁴ от 4 п (горизонтальные углы $a_1 = +2^{\circ}30$ и $a_2 = -8^{\circ}$, вертикальные $\beta = +0^{\circ}50$). При таком телесном угле изучалась форма фокальной поверхности. Производилось четыре экспозицич при разных эпачениях напряженности магнитного поля. Таким способом определялась форма альфа-линии в зависимости от ее положена фотопластинке. Движением источника относительно положения "О" для каждого значения поля определялось то положение, при котором полущирина линии была минимальной. Таким образом было получено четыре точки на фокальной поверхности (рис. 12). Было решено ставить кассету по отношению к фокальной поверхности так, чтобы полуширины альфа-линий на всех пластинках были приблизительно одинаковыми. В результате получена средняя полуширина ≈ 5 кэв. При этом интенсивность линий на всех пластинках одинакова с точностью 10%.

5. Градуировка спектрографа и оценка фона

Градуировка производилась по альфа-линии E a = 5805,2+1,2 кэв (_Нρ = 347072 + 36 э.см)²⁴⁴ Cm ^{/11/}. Градуировочная линия (рис. 13) строилась следующим образом: по оси абсцисс откладывалось расстояние (^р) от края пластинки до места пересечения "жесткого" спада линии с осью, по оси ординат - эффективный радиус р _{эфф.}, полученный из отношения Нр реперной ликом к измеренному в данной экспозиции значению магнитного поля. Величина

магнитного поля измерялась в том месте, где расположена ампула датчика магнитометра. Это место точно не определялось. Зависимость р от ℓ можно считать линейной.

Так как для градуировки мы пользовались только линией 5805,2 кэв²⁴Ст, то было очень важно оценить, с какой точностью можно будет определять энергию альфа-частиц в области 3-4 Мэв.

Из рис. 7 видно, что максимальное отличие неоднородности магнитного поля по азимуту при $H_{r_0=184} = 1618 \Rightarrow (E_a \approx 3 M \Rightarrow B)$ от неоднородности при $H_{r_0=184} = 2388 \Rightarrow (F_a \approx 6,5 M \Rightarrow B)$ не превышает 0,07%. Оценки показывают, что в первом случае действие поля будет таковым, как если бы его величина была на 0,01-0,02% больше расчетного значения, полученного из градуировки. Это означает, что если в качестве репера взять альфа-линию ²⁴⁴ (m, то в области $F_a \approx 3$ Мэв можно ожидать уменьшения значения энергии альфа-частиц на ≤ 1 кэв по сравнению с расчетным. Неточность определения энергии в области $F_a \approx 4$ Мэв должна быть еще меньше, чем в области 3 Мэв.

При изучении тонкой структуры альфа-спектров необходимо, чтобы фон был минимальный. В нашем случае величина фона в определенном участке спектра находилась как отношение среднего числа альфа-треков в полосе шириной 1 мм к числу альфа-треков в такой же полосе на пике линии¹⁴⁹ a_oTb (F_{α} =3967 кэв) (рис. 14 и 15). На расстоянии в 150 кэв от a_0 в сторону меньших энергий фон составляет 3.10⁻⁶ от количества треков на максимуме линии. На больших расстояниях значение фона остается примерно постоянным. Эксперименты по дальнейшему снижению фона не производились.

Одной из важнейших характеристик альфа-спектрографов является светимостьпроизведение телесного угла на площадь источника. Большая светимость спектрографов важна при использовании источников малой удельной активности. Источники, получаемые при облучении мишеней на синхропиклотроне ЛЯП ОИЯИ, обладают очень большой удельной активностью. В связи с этим до сих пор нам не требовалось готовить источники большой плошади и мы не исследовали экспериментально вопросы связанные со светимостью нашего спектрографа. На основании расчетов следует ожидать, что построенный нами спектрограф обладает такой же светимостью, как спектрограф, описанный в работе^{/3/}, который в этом отношении является лучшим в мире прибором.

В табл. 1 основные параметры построенного прибора сравниваются с параметрами других известных альфа-спектрографов.

Из сравнения видно, что построенный спектрограф по своим качествам является одним из лучших приборов такого типа. Эксперименты по получению максимальной разрешающей способности мы пока не проводили, так как при исследованиях альфа-спектров в редкоземельной области, которые выполнялись на этом спректрографе, полуширина линии меньше 5 кэв не требуется. Однако мы считаем, что топография магнитного поля, осуществленная в нашем приборе по расчетам работы^{/10/}, должна позволить нам в будущем получить эначительно более высокие показатели по разрешающей способности.

Построенный альфа-спектрограф использовался при исследовании альфараспада редкоземельных элементов. Результаты этих исследований опубликованы в /12,13/. Основным достижением этих работ является обнаружение тонкой структуры альфа-спектров ¹⁴⁹ Ть, ¹⁵¹ Ть и ¹⁵⁵ Гу. Решающим обстоятельством в этих исследованиях была низкая величина фона спектрографа.

В заключение мы пользуемся случаем выразить глубокую признательность В.П. Джелепову за постоянный интерес и поддержку, оказанные при создании альфа-спектрографа. Мы глубоко благодарны Б.И. Замолодчикову, Г.И. Селиванову, В.А. Богачу за внимание и помощь в нашей работе, проф. С.А.Баранову, А.Г. Зеленкову, В.М. Кулакову за передачу богатого опыта по созданию и эксплуатации большого прецизионного альфа-спектрографа, Р.Б. Иванову, В.Г. Недовесову, Л.А. Саркисяну за многочисленные консультации и полезные советы, Б.В. Феоктистову за расчет дополнительных траекторий движения альфа-частиц в магнитном поле.

Выражаем свою особую благодарность и признательность К.А. Байчеру за создание остроумного приспособления для изготовления магнитных шимм и оперативное руководство при выполнении этой трудоемкой работы, а также благодарим конструкторов Н.И.Фролова, Н.С.Толстого, В.И.Сидорову за разработку координатомера и системы подвижных диафрагм, В.Н.Филиппова, Б.Г.Швецова, В. Калачева, В.К.Филимонова, С.И.Мельникова, В.М.Широкова, В.П.Малыгина, В.В.Горшкова, С.П.Ведрова, А. Макарова, Ю.И. Толкачева, В.И.Соболева, А.М.Озерова, В.С.Горбачева, В.Д.Плужникова за выполнение всех механических работ, А.Кокарева и Л.В.Васильева за помощь в создании магнитометра,

В.В. Ахманова, Н.П. Чистякова, Б.В. Дегтярева, В.Ф. Мицина за наладку электрической системы, Е.В. Лебедеву за обработку фотопластинок.

Таблица 1

Тип спектрографа, место его создания, ссылка	Радиус равновесной орбиты госм	Полушири- на линии ΔΗρ/Ηρ	Телесный угол Ωот 4π	Относитель- ный фон
Дубна, СССР « √2	154	3.10 ⁻⁴ 5.10 ⁻⁴	4,5.10 ⁻⁴ 8.10 ⁻⁴	3.10 ⁻⁶
Москва СССР т/2 ^{-/3,14/}	155	1.10 ⁻⁴ 3.10 ⁻⁴ 5.10 ⁻⁴	5.10 ⁻⁴ 8.10 ⁻⁴	4.10 ^{-7/14/}
Москва, СССР $\pi\sqrt{2}$	50	7.10-4	2.10 ⁻⁴	
Ленинград, СССР π√2 /2/	33,5	8.10-4	3.10 ⁻³	
Беркли, СШ'А 180 ⁰ ,двойная фокус./15/	35	5 . 10 ⁻⁴	7.10-4	
Орсэ, Франция 180 ⁰ , с фокус. линэами/16/	50	2,5.10-4	≥ 1.10 ⁻⁴	10 ⁻⁴
Беркля, СШ [:] А сектор 60 ⁰ /17/		7.10 ⁻⁴	1.10-4	

Литература

- 1. Л.Л. Гольдин, Е.Ф. Третьяков. Изв. АН СССР, сер. физ., 20, 859 (1956).
- 2. Б.С. Джелепов, Р.Б. Иванов, В.Г. Недовесов, В.Г. Чумин. Изв. АН СССР, сер.физ., <u>23</u>, 782 (1959).
- 3. С.А. Баранов, А.Г. Зеленков, Г.Я. Шепкин, В.В. Беручко, А.Ф. Малов. Изв. АН СССР, сер. физ., <u>23</u>, 1402 (1959), Атомная энергия, <u>7</u>, 262 (1959).
- 4. Ю.Н. Денисов, С.А. Ивашкевич. Препринт ОИЯИ, 13-3218-1, Дубна, 1967.

5. N. Svartholm, K.Siegbahn, Ark.Mat.Astr. Fys., 33, A 21 (1946).

6.F.Shull, D.Dennison, Phys. Rev., 71, 681 (1947); 72, 256 (1948).

7. N.Verster. Physica, <u>16</u>, 815 (1950)

.

8. В.Р. Саулит. Изв. АН СССР, сер. физ. 18, 227 (1954).

9. И.Е. Иродов. Сборник "Некоторые вопросы теоретической физики", М., Атомиздат, 1958, стр. 193.

10. Б.С. Джелепов, Б.В. Феоктистов. Препринт ОИЯИ, 1789, Дубна, 1964.

11. A. Wapstra. Nucl. Phys. 57, NI, 48 (1964).

12. V.G.Chumin, K.Ya.Gromov, B.Makhmudov, Zh.T.Zhelev.

Preprint E-2721, Дубна, 1966, Доклад на Междуна-

родной конференции по ядерной физике в Гатлинберге (США), сентябрь 1966 г.

- 13. Н.А. Головков, К.Я. Громов, Н.А. Лебедев. Б. Махмудов, А.С. Руднев и В.Г.Чумин. Доклад на XVII советании по ядерной спектроскопии и структуре атомного ядра. Харьков, 1967.
- 14. С.А. Баранов, Ю.Ф. Родионов, В.М. Кулаков, В.М. Шатинский. Ядерная физика, <u>4</u>, 1108 (1966).

15. D.L.Judd, S.A.Bludman, Nucl.Instr., 1, 46 (1957).

18. R.F.Walen, V.Nedovessov, G.Bastin-Scoffier, Nucl. Phys., 35, 232 (1962).

17. F.L.Reynolds. Rev.Sci.Instr., 22, 749 (1951).

Рукопись поступила в издательский отдел 24 мая 1967.

Рис. 1. Магнит альфа-спектрографа: 1 - сердечник, 2 -нижняя "шляпа", 3 - верхняя "шляпа", 4 - обмотки возбуждения магнита, 5 -полюсная накладка.

.

Рис. 2. Магнит альфа-спектрографа (вид сверху). На боковой поверхности нанесена шкала в градусах.

Рис. 3. Схема вакуумпой системы спектрографа; 1 - камера 2 -люки, 3 -фотокассета, 4 -манометрические лампы, 5 -шиберы, 6 -шлюзы, 7 -датчик магнитного поля, 8 -стакан, 9 -вакуумный агрегат ВА-5-4,10 -балластный форвакуумный бак, 11 -форвакуумный насос ВН-1, 12 -источник, 13 - полвижная диафрагма.

Рис. 4. Схема координатомера: 1 - датчик магнитного поля, 2 - электромотор перемещения датчика по радиусу, 3 - электромотор перемещения датчика по высоте 4 -несущая конструкция, 5 -мотор движения по азимуту, 6 -опорные ролики, 7-осевая втулка, 8 -диск-основа, 9 - шестерня.

Рис. 5. Зависимость № = {(т) при наличии только полюсных накладок (без шимм). По оси абсписс отложены значения радиуса, по оси ординат Ц (т) Ц_{то}= 154

•

•

Рис. 7. Неоднородность магнитного поля В зазоре магнита вдоль окружностей с радиусами 130, 140, 154 и 160 см. (без камеры). По оси ординат отложены значения $\frac{H(\phi) - H \phi = 144^{\circ}}{H \phi = 144^{\circ}}$ По оси абсцисс – угол поворота координатомера ϕ . Точки соответствуют случаю, когда напряженность магнитного поля на окружности радиуса 154 см, H = 1618 э, крестики – H = 2388 э, квадратики – H = 3211 э. Стрелки показывают максимальный диапазон углов ϕ , который может быть использован.

Рис. 9. Зависимость H=f(r) при $\phi = 84^{\circ}$ и H_{r = 15} 2388 э. По оси абсцисс отложены значения радиуса, по оси ординат - эначения $[(\frac{H(r)}{H_{r_0} = 164})_{Teop} - (\frac{H(r)}{H_{r_0} = 164})_{3KCn}]^{\%}$. Кривая с крестиками соответствует случаю, когда в зазоре магнита нет вакуумной камеры, кривая с точ ками - когда камера установлена в зазоре.

Рис. 10. Влияние величины напряженности поля на зависимость H = f(r). Камеры в зазоре нет. Обозначения те же, что и на рис. 8,9.

Рис. 11. Схема пучка альфа-частиц.

Рис. 12. Форма фокальной поверхности.

фотопластинки, по оси ординат - эффективный раднус.

Рис. 14. Альфа-спектр 149 Ть.

Рис. 15. Отношение числа альфа-треков в полоске фотопластинки шириной в 1 мм на данном участке спектра к числу альфа-треков в такой же полоске на пике линии ¹⁶⁹ Ть F a = 3967 кэв. Область спектра 3670-3970 кэв.