ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

7-9/2-78 Б.М.Головин, В.Ф.Кушнирук, Л.А.Пермякова

F- 611

ОБ ИНВЕРСИОННОМ МЕХАНИЗМЕ ОБРАЗОВАНИЯ ВХОДНОГО "ОКНА" КРЕМНИЕВЫХ ПОВЕРХНОСТНО-БАРЬЕРНЫХ ДЕТЕКТОРОВ ЯДЕРНЫХ ИЗЛУЧЕНИЙ

P13 - 10991

2/1-78

P13 - 10991

Б.М.Головин, В.Ф.Кушнирук, Л.А.Пермякова

ОБ ИНВЕРСИОННОМ МЕХАНИЗМЕ ОБРАЗОВАНИЯ ВХОДНОГО "ОКНА" КРЕМНИЕВЫХ ПОВЕРХНОСТНО-БАРЬЕРНЫХ ДЕТЕКТОРОВ ЯДЕРНЫХ ИЗЛУЧЕНИЙ

Направлено в ПТЭ

	063.5	IN UNCTREVE
1	RACASIS	CALTRONIN
-	· SHE /w	IOTERA .
1	Sand Street Stre	

Головин Б.М., Кушнирук В.Ф., Пермякова Л.А. Р13 - 10991

Об инверсионном механизме образования входного "окна" кремниевых поверхностно-барьерных детекторов ядерных излучений

Проведен расчет толшин инверсионных слоев и напряженности электрического поля в них для кремниевых поверхностно-барьерных детекторов (ПБД) ядерных излучений при различных значениях удельного сопротивления исходного материала и приложенных рабочих смешениях.

Результаты расчетов сравниваются с экспериментальными данными о толшинах входных "окон" кремниевых детекторов.

На основании полученных данных сделан вывод о том, что в настояшее время нет сколько-нибудь убедительных доказательств в пользу отождествления толшины инверсионного слоя с толщиной входного "окна" ПБД.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1977

Golovin B.M., Kushniruk V.F., Permyakova L.A. P13 - 10991

On Inversion Mechanism of Formation of Entrance "Window" of Surface-Barrier Detectors of Nuclear Radiations

Inversion layer thicknesses and their electric field intensity have been calculated for silicon surface-barrier detectors (SBD) of nuclear radiations at various values of specific resistance of initial material and reverse bias voltage applied.

The calculation results are compared to experimental data on thicknesses for silicon detector entrance "windows".

Basing on the data obtained the conclusion has been drawn that at the moment there is no any reliable evidence available in favor of identification of the thickness for inversion layer with that for entrance "window" of SBD.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Preprint of the Joint Institute for Nuclear Research, Dubna 1977

С 1977 Объединенный инспинут ядерных исследований Дубна

В работах ^{/1-3/} наблюдались потери заряда в приповерхностных слоях кремниевых поверхностно-барьерных детекторов /ПБД/, которые обычно связывают с существованием неэффективного / "мертвого"/ слоя вещества у выходной поверхности детектора. Такой слой называется также входным "окном" счетчика.

Причиной возникновения "мертвых" слоев нередко считают инверсионный слой, существование которого подтверждено экспериментально ^{/4/}. Авторы работы ^{/5/} считают, что этот слой составляет основную часть толщины "мертвого" слоя, но в подтверждение своей идеи не приводят результатов какого-либо количественного анализа.

Можно также предположить, что неэффективная область на входе ПБД совпадает с той частью инверсионного слоя, где из-за высокой проводимости возможно мала напряженность электрического поля^{/4/}.

В настоящей работе приводятся результаты расчета толщины инверсионных слоев и напряженности электрического поля в них при различных значениях удельного сопротивления (ρ) исходного материала и приложенных к счетчику рабочих смещениях. Результаты расчетов сравниваются с экспериментальными данными о толщинах "мертвых" слоев в ПБД.

Энергетическая диаграмма поверхностно-барьерного детектора приведена на *рис.* 1.

При проведении вычислений делались следующие допущения:

а/ донорная примесь в исходном n-кремнии полностью ионизирована; в P -области концентрация свободных электронов мала по сравнению с концентрацией дырок;

3

Рис. 1. Энергетическая диаграмма уровней и форма потенциального барьера на границе металл – п - кремний в равновесных условиях: E_c , E_v - нижний и верхний уровни зоны проводимости и валентной зоны соответственно; E_F , E_i - уровни Ферми в исходном материале и в материале собственной проводимости соответственно; $q \Phi_s$, $q \Phi_b$ - значения потенциала $q \Phi = E_F - E_i$ на поверхности и в объеме; qV_s , qV - полный изгиб зон на поверхности и в произвольной точке области пространственного заряда соответственно; $q \Phi_{Bn}$ - высота потенциального барьера на границе металл-полупроводник; Φ_m - работа выхода металла; $qV_n = E_c - E_F$.

б/ в неравновесном состоянии вдоль всей переходной области p – n - перехода положение квазиуровней Ферми для основных носителей постоянно ^{/6/}. Слой с р-проводимостью в ПБД из n-кремния лежит между точками A и C / puc. 1/. Его толщину можно рассчитать по формуле ^{/7/}:

$$Z_{p} = \left(\frac{\kappa \epsilon_{0} kT}{2 q^{2} n_{i}}\right)^{\frac{1}{2}} \int_{u_{s}}^{0} \frac{du}{\left[\left(u_{b} + \left|\frac{qV_{a}}{kT}\right| - u - 1\right)e^{u_{b}} + e^{-u}\right]^{\frac{1}{2}}\right]},$$

полученной из уравнения Пуассона, записанного для робласти ПБД при наложении на p-n - переход обратного смещения V_a. Здесь

$$u = u_{b} + \frac{q |V_{a}|}{kT} + v$$
, /2/

$$u = \frac{q\Phi}{kT}, \quad v = \frac{qV}{kT}, \quad /3/$$

 v_s , u_s - поверхностные значения потенциалов u и v; u_b - объемное значение потенциала u; n_i - концентрация носителей в собственном материале; κ - дизлектрическая постоянная кремния; q - абсолютное значение заряда электрона.

Толщину (Z_p) области с р-проводимостью в рассматриваемом нами случае можно представить как состоящую из двух частей:

$$Z_p = Z_i + Z_p^o$$
,

где Z_i - участок с проводимостью (σ_i) больше объемной проводимости (σ_b), Z_p° - участок с проводимостью $\sigma_p^{\circ} \leq \sigma_b$ /puc. 1/.

Толщины этих участков можно найти из уравнения /1/, если интегрирование проводить в пределах:

$$u_{s} \le u \le -u_{b}$$
 - для области Z_{i} ;
- $u_{b} < u < 0$ - для области Z_{p}° .

4

5

Нижний предел интегрирования в уравнении /1/ определяется величиной поверхностного потенциала

$$u_{s} = u_{b} + \frac{|qV_{a}|}{kT} + \frac{qV_{s}}{kT},$$
 (4/

зависящего от потенциала V₈.

Результаты таких расчетов представлены в табл. 1. При сравнении расчетных данных с экспериментальными мы брали не полную толщину (Z_p) р - области в ПБД, а толщину Z₁-области, проводимость которой больше объемной проводимости, где в согласии с работой /4/ можно было ожидать низкое электрическое поле в инверсионном слое.

В работе $^{/7/}$ толщина Z_p рассчитывалась при $V_s =$ = -0.52 В +10% независимо от удельного сопротивления исходного материала. Это значение V_s обычно считают приблизительно верным для поверхностей, обработанных стандартным травителем СР-4.

Однако известно соотношение, связывающее величину V₈ с высотой потенциального барьера (Ф_{Вр}) на поверхности металл-полупроводник 78/

$$V_s = \Phi_{Bn} - V_n .$$
 (5)

8-10 В соответствии с экспериментальными данными Ф_{Вп} - величина постоянная для данного металла и не зависит от уровня легирования полупроводника. Для контакта Au-(n-Si)

 $\Phi_{\rm Rn} = 0.81 \ B.$

Величина $V_n = E_c - E_F$ зависит от ρ и, очевидно, переносит эту зависимость на V₈.

Выполненные нами расчеты /см. табл. 2/ показали, что V_s оказывается близким к - 0,52 В только в случае низкоомного материала / р = 100 Ом · см/ и значительно отличается от этой величины для материалов высокоомных. Поэтому расчеты толщины инверсионного слоя и напряженности электрического поля в нем проводились с V_s, определяемым из /5/. На

Ш CJOEL **XHHER**

										5						
G	×	Zi (,	Å)	Z° (Å)	Zi / .	Z°	$V_{S}(B)$	Z i ()	()	Z 🖁 (Å)	Zi/1	2°	Vs(B)	ϕ_{8n}
J.	, í	внча	сленны	е при	Va (B)	u		иdи		вычи	сленні	du ar	I Val	3)	иdп	
YOM O	(B)	100	1000	100	1000	001	1000	φ _m =0.8Ι	100	000I	100	1000	100	1000	Z _{i = 7}	Z M.C.
0.1	-0.52	232	74	165	187	0.39	0.4	-0.47	105	33	169	187	0.18	0.18		I
1.0	-0.52	1700	557	1350	429	I.26	I.3	-0.41	847	269	I350 4	129	0.63	0.63	-0.I34	0.54
0 1	-0.52	6660	2510	2660	840	2.5	3.0	-0.35	4280	1360	2660 8	340	I9 • I	I.62	-0.129	0.59
50	-0.52	15200	5910	3390	1070	4.48	5.52	-0.3I	11800	3850	3390	I070	3.48	3.6	060.0-	0.60
100	-0.52	21500	8420	3240	1030	6.64	8.17	-0.29	00 4 71	5850	3240	I030	5.46	5.68	1	ı

7

Таблица П	. Значение	потенциалов	٧s		вычисленные	по	формуле	(5)
raonnua n	. onaschic	norenumbion	15	,	DHARCHICHNEC	що	ψορmyne	10

	Удельное	сопротивление	исходного мате	ериала р.	(ком-см)
$\phi_{\mathbf{n}}$	0.1	I	10	50	100
- 6/	Значения	потенциала Vs	(B)		
0.81	-0.47	-0. 4 I	-0.35	-0.3I	-0.29

рис. 2 показана зависимость толщины инверсионного слоя от обратного смещения на счетчике для разных значений удельных сопротивлений исходного материала. На этом же рисунке для сравнения представлены результаты экспериментальных измерений входных "окон", полученные в работе ^{/1/} с использованием протонов с энергией 80 кэВ.

Отметим, что во всех рассмотренных нами случаях эффективная толщина "мертвого" слоя $Z_{MC} < Z_i < Z_p$. Для выполнения условия $Z_{M,C} = Z_p^{-/5/}$ пришлось бы, в противоречии с экспериментом, взять Φ_{Bn} значительно меньше O,81 *В / табл. 1/.* Этот результат противоречит утверждениям о том, что инверсионная область в ПБД в основном совпадает по толщине с "мертвым" слоем счетчика.

На рис. З показано изменение напряженности электрического поля (Е) по толщине Р-области счетчика в зависимости от удельного сопротивления исходного материала. Видно, что при фиксированном значении удельного сопротивления материала напряженность электрического поля остается практически постоянной по всей толщине р-области.

Напряженность электрического поля изменяется с уровнем легирования исходного материала, однако во всех рассмотренных случаях она достаточно велика и всегда превышает среднюю напряженность поля в счетчике. Такой результат противоречит мнению о том ^{/4/}, что инверсионный слой - "эффективный" мертвый слой счетчика, образованный за счет низкой напряженности поля в нем.

Рис. 2. Расчетные зависимости толщины инверсионного слоя (Z₁) от обратного смещения для разных значений удельного сопротивления исходного материала: а/ ρ = 1 кОм см; б/ ρ = 10 кОм см; в/ ρ = 50 кОм см. Цифры на кривых - значения потенциала V_s. Пунктирными линиями показаны экспериментальные зависимости для толщины входных "окон" по результатам измерений $^{/1'}$.

Из полученных результатов следует, таким образом, что в настоящее время нет сколько-нибудь убедительных оснований к отождествлению толщины "мертвого" слоя ПБД с толщиной инверсионного слоя в нем. Необоснованны также попытки связать появление "мертвого" слоя с малой напряженностью электрического поля в инверсионном слое.

Рис. 3. Изменение напряженности электрического поля (E) по толщине р-области счетчика при разных значениях удельного сопротивления исходного материала: 1 -0,1 кОм см; 2 - 1 кОм см; 3 - 10 кОм см; 4 - 50 кОм см. Рабочее смещение - 100 В. Цифры на кривых - значения средней напряженности электрического поля в счетчике.

Можно предположить, однако, что неэффективная область на входе ПБД, занимая часть инверсионного слоя, определенным образом связана с особенностями его строения и движения в нем носителей заряда ^{/7/}. Поэтому проведение экспериментальных и теоретических исследований структуры приповерхностной области ПБД и собирания носителей заряда в ней представляет значительный интерес.

ЛИТЕРАТУРА

- 1. Forcinal G., Siffert P., Coche A. IEEE Trans., 1968, NS-15, no. 3, p.275.
- 2. Gigante J.R., Lundgren R.A. IEEE Trans., 1974, NS-21, no. 1, p.395.
- 3. Кушнирук В.Ф., Харитонов Ю.П. ОИЯИ, 13-9836, Дубна, 1976.
- 4. Васильев А.М. и др. ФТП, 1969, 3, с.1276.
- 5. Барабаш Л.И., Литовченко П.Г. Полупроводниковая техника и микроэлектроника. "Наукова Думка", Киев, 1976, 23, с.16.
- 6. Шокли В. Теория электронных полупроводников. Пер. с англ. под ред. В.П.Жузе. ИЛ., М., 1963.
- 7. Hansen N.J. Nucl.Instr. and Meth., 1971, 96, p.373.
- 8. Torreiter A., Siffert P. Proc. of the Symposium on Semiconductor Detector for Nuclear Radiation. 1970, Munich, p.107.
- 9. Милис А., Фойхт Д. Гетеропереходы и переходы металл - полупроводник. Пер. с англ. под ред. В.С.Вавилова. "Мир", М., 1975, с.187.
- 10. Cowley A.M., Sze S.M. J.Appl.Phys., 1965, 36, no. 10, p.3212.

Рукопись поступила в издательский отдел 4 октября 1977 года.