ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

2805/2-77 В.Г.Гребинник, В.Х.Додохов, В.А.Жуков,

ншн

........

F-79

......

А.Б.Лазарев, А.А.Ноздрин, А.Ф.Писарев, В.А.Столупин, В.И.Травкин

ИССЛЕДОВАНИЕ РАБОТЫ ГАЗОВЫХ ПРОПОРЦИОНАЛЬНЫХ СЧЕТЧИКОВ ПРИ ДАВЛЕНИЯХ ДО 100 АТМОСФЕР

25 Jun- 24.

P13 - 10552

P13 - 10552

В.Г.Гребинник, В.Х.Додохов, В.А.Жуков, А.Б.Лазарев, А.А.Ноздрин, А.Ф.Писарев, В.А.Столупин, В.И.Травкин

ИССЛЕДОВАНИЕ РАБОТЫ ГАЗОВЫХ ПРОПОРЦИОНАЛЬНЫХ СЧЕТЧИКОВ ПРИ ДАВЛЕНИЯХ ДО 100 АТМОСФЕР

Направлено в ПТЭ

оръздания настанования васника встанования БИСЛИАТЕКА Гребинник В.Г. и др.

P13 - 10552

Исследование работы газовых пропорциональных счетчиков при давлениях до 100 атмосфер

Приводятся результаты исследования газового усиления и энергетического разрешения цилиндрических пропорциональных счетчиков диаметром 6 и 14 мм, заполненных аргоном и смесью из 90% аргона и 10% метана, при давлениях до 100 атм. В качестве анода использовались позолоченная вольфрамовая проволока диаметром 19,4; 16,4; 20,8 мкм, а также проволока, покрытая тонким слоем стекла.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубиа 1977

Grebinnik V.G. et al.

P13 - 10552

Investigation of the Gas Proportional Counters Operating at a Pressure of 100 atm

The results are presented of the investigation of the gas multiplication and energy resolution for cylindrical proportional counters 6 and 14 mm in diameter filled with argon and a mixture of 90% argon and 10% methane at a pressure up to 100 atm. A gold-plated tungsten wires 19.4, 16.4, and 20.8 μ m in diameter as well as a wire covered with a thin layer of glass were used as anode.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Preprint of the Joint Institute for Nuclear Research, Dubna 1977

© 1977 Объединенный инспинут ядерных исследований Дубна

Многочисленные попытки /1,2,4/ получить пропорциональный режим размножения электронов в счетчиках, заполненных жидким или кристаллическим аргоном, не привели к желаемым результатам. В связи с этим представляет определенный практический интерес изучение возможности получения в счетчике более плотной рабочей среды при сильном повышении давления с сохранением при этом пропорционального режима, характерного для счетчиков с газовым наполнением. Имеющиеся отдельные исследования в этом направлении /3,4/ показывают, что пропорциональное размноэлектронов в счетчике, заполненном газовой жение смесью, наблюдается вплоть до давления 100 апм. Однако в этих работах отсутствуют сведения о подробном исследовании одной из важнейших характеристик счетчика - его энергетическом разрешении. Поэтому целью настоящей работы явилось систематическое изучение в единых экспериментальных условиях счетных, амплитудных и энергетических характеристик счетчика с плотной газовой средой. Вместе с тем, в данную программу исследований был включен также опыт по изучению характеристик газового счетчика, анод в котором был выполнен из проводящей нити, покрытой тонким слоем из высокоомного материала. Предполагалось, что такое покрытие будет стабилизировать режим размножения электронов вблизи нити при высоком давлении газа.

ЭКСПЕРИМЕНТАЛЬНАЯ АППАРАТУРА

В работе использовались два цилиндрических счетчика, конструкция которых приведена на *рис. 1.* Каждый счетчик имел латунный катод с внутренним диаметром и длиной для одного счетчика 6 и 60 *мм* и для другого -14 и 80 *мм*, соответственно. В качестве анода использовались золоченые вольфрамовые нити диаметром 10,4;

Рис. 1. Конструкция пропорционального счетчика. 1 фторопластовый изолятор; 2 - источник гамма-квантов, 3 - корпус высокого давления, 4 - ввод газа, 5 - предусилитель, 6 - анод; 7 - катод, 8 - подвод высокого напряжения.

16,4; 20,8 *мкм*, а также тонкая проволочка, покрытая слоем диэлектрического материала /стекла/. Анодная нить проходила по центру счетчика через стеклянные капилляры и с одного конца удерживалась упругой пружинкой, которая предотвращала ее провисание.

В разных опытах счетчики заполнялись аргоном "особой" чистоты с содержанием примесей: кислорода О,0005%, паров воды < 0,005 г/м³, азота < 0,002%, а также смесью из 90% аргона и 10% метана.

Также смесью из ус и аргона и сточника 241 Ат Гамма-кванты от внешнего источника 241 Ат / Е_γ = 59,6 кэВ/ попадали в объем счетчика через окно в катоде, причем толщина латунной стенки в месте облучения составляла ~ О,5 мм.

Полученный со счетчика импульс поступал на зарядово-чувствительный предусилитель, затем через спектрометрический тракт^{/2/}-на амплитудный анализатор марки АИ-128. Амплитудная калибровка электронного тракта производилась через дозирующую электрическую емкость предусилителя. Энергетический эквивалент шумов по аргону при суммарной входной емкости ~ 15 *пФ* составлял около 40 кэВ/полная ширина на полувысоте/.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

Исследования свойств счетчиков включали в себя изучение зависимости коэффициента газового усиления /КГУ/ и энергетического разрешения от приложенного напряжения в широком интервале изменения давления /5÷100 атм./ рабочей смеси.

Работа счетчика с нитью без диэлектрического покрытия

Для каждого счетчика с разными диаметрами анода были получены амплитудные распределения и зависимости величины выходного сигнала от приложенного напряжения. В качестве конкретного примера на *рис. 2* приводятся амплитудные характеристики для счетчика с катодом 6 *мм* и анодом диаметром 16,4 *мкм* при различных давлениях аргона и смеси аргона с метаном. Счетчик, заполнеиный только аргоном, работал устойчиво вплоть до давлений 100 *атм.* Однако, как видно из *рис. 2*, с ростом давления максимальный коэффициент размножения электронов уменьшается /верхняя точка каждой кривой соответствует началу коронного разряда/.

Рис. 2. Амплитудные характеристики счетчика. Диаметр катода 6 мм, диаметр анода 16,4 мкм, $1\div 5$ - давления 5, 10, 20, 50, 100 атм в смеси 90% метана и 10% аргона; $6\div 10$ - давления 5,10, 20, 50, 100 атм в аргоне.

Счетчик с большим диаметром катода, заполненный аргоном, при давлениях выше 50 атм работал неустойчиво. В нем часто возникали кратковременные разряды при напряжениях ниже пробивного значения. С ростом давления максимальный коэффициент размножения резко уменьшался и для 100 атм не превышал 20. Это могло быть связано с увеличением расстояния дрейфа электронов в сильном электрическом поле, а также с качеством поверхности катода этого счетчика.

Добавление метана, как и следовало ожидать, значительно улучшает работу счетчиков. Амплитудные характеристики становятся более пологими, а область пропорциональности - более широкой, чем для чистого аргона. При этом плато счетной характеристики становится более протяжным. Счетчики, заполненные смесью 90% аргона и 10% метана, работали устойчиво как при низких, так и при высоких давлениях. Пропорциональное усиление электронов при этом достигало величины ~ 10⁴ или несколько выше при всех давлениях вплоть до 100 *атм.*

В качественном отношении работа счетчиков с анодами диаметрами 16,4 и 20,8 мкм была одинаковой.

На рис. З изображены характерные амплитудные распределения, полученные на этих счетчиках. Первый из приведенных спектров /а/ является типичным для счетчиков с диаметрами нити 16,4 и 20,8 мкм при наполнении их аргоном и смесью аргона с метаном при всех использованных в опыте давлениях. Основной пик этого спектра соответствует энергии 59,6 кэВ. Пик слева на кривой рис. За соответствует вылетающим из катода гамма-квантам с энергией ~8 кэВ К-излучения меди. Второй спектр /б/ амплитуд импульсов был получен для счетчиков с анодом диаметром 10,4 мкм

Рис. 3. Амплитудные распределения импульсов от гамма-квантов ²⁴¹Ат при давлении аргона 50 атм: а/диаметр анода 20,8 мкм; б/ диаметр анода 10,4 мкм.

7

при давлениях газа выше 20 атм как для аргона, так и для смеси аргона с метаном. Из рисунка видно, что в этом спектре присутствуют два пика примерно равной интенсивности, разделенные энергетическим интервалом, величина которого росла с увеличением давления газа и приложенного к счетчику напряжения. При этом характер спектра не зависел от интенсивности облучения счетчика гамма-квантами. Такое поведение спектра затрудняет объяснение наблюдаемого раздвоения линии, которое скорее всего связано с дефектами используемой нити диаметром 10,4 мкм.

Энергетическое разрешение счетчиков, определяемое как отношение $\Delta E/E \cdot 100\%$, где ΔE - полная ширина на полувысоте спектра, зависело от диаметра анода и давления газа, увеличиваясь с их ростом. Однако в широком диапазоне изменения коэффициента газового усиления разрешение не зависело от его величины, что видно из *рис.* 4, на котором приводятся кривые зависимости величины разрешения от величины КГУ для счетчика диаметром 6 мм с анодом 16,4 мкм при давлениях аргона и смеси аргона с метаном 10,20, 50, 100 атм.

Характеристики счетчиков и их работа при низких давлениях /до 5 *атм*/ хорошо согласуются с имеющимися в литературе данными.

Из амплитудных характеристик, подобных приведенным на *рис. 2*, можно оценить пороговое напряжение начала пропорционального усиления $V_{\text{пор}}$, которое зависит от размеров счетчика, а также рода и давления газа. Мы определяли $V_{\text{пор}}$ как напряжение, при котором коэффициент размножения был равен единице. На *рис. 5* приводятся значения величины $V_{\text{пор}}/R_A \ln(R_K/R_A)$ в зависимости от давления газа. Эти значения довольно хорошо ложатся на прямую /в логарифмическом масштабе/, что свидетельствует о характере зависимости $V_{\text{пор}} \sim p^{1/3}R_A \ln(R_K/R_A)$, где р-давление газа в счетчике, R_A - раднус анода и R_K - радиус катода счетчика.

Разрешение %

9

Рис. 5. Зависимость приведенного напряжения начала пропорционального усиления от давления.

Работа счетчика с анодом, покрытым тонким слоем из диэлектрического материала

/1,2,4/ В ряде работ , посвященных исследованию работы счетчиков, заполненных жидким или кристаллическим аргоном, в качестве одной из причин отсутствия пропорционального размножения в этих средах указывается наличие на аноде различных неоднородностей или дефектов - так называемых "горячих точек". Эти дефекты препятствуют получению контролируемого размножения электронов. Для устранения их влияния на разряд в работе ^{/5/} предлагалось использовать в счетчике в качестве анода проводящую нить, покрытую тонким слоем вещества со слабой проводимостью. С целью выявления закономерностей, характерных для счетчика с таким анодом, мы исследовали работу счетчика с диаметром катода 6 *мм* при высоких /до 100 *атм*/ давлениях аргона.

В качестве анода использовалась проволока, покрытая стеклом, со следующими параметрами: диаметр нити - 11,5 *мкм*, диаметр жилы - 2,5 *мкм*, толщина стекла - 4,5 *мкм*, материал жилы - медь, материал стекла - пирекс. Удельное сопротивление стекла -10¹² Ом.см.

На *рис.* 6 представлена эквивалентная схема включения счетчика, где $C_{\rm A}$ - электрическая емкость, а $R_{\rm A}$ - электрическое сопротивление диэлектрического покрытия, равные соответственно

$$C_{\mu} = \frac{2\pi \cdot 0.0885 \epsilon l}{\ln(1+\delta/R_0)} \quad n\Phi, \qquad R_{\mu} = \frac{p \ln(1+\delta/R_0)}{2\pi l} \quad OM$$

Рис. 6. Эквивалентная схема включения счетчика с анодом, покрытым диэлектрическим слоем. R_{Λ} и C_{Λ} омическое сопротивление и электрическая емкость диэлектрического слоя; R - нагрузочное сопротивление; C - входная емкость предусилителя ПУ; C_0 - емкость обратной связи предусилителя. Здесь ϵ - диэлектрическая постоянная стекла, равная 5,7; δ - толщина диэлектрического покрытия, *мкм*; ℓ - параметр локализации лавины, по порядку величины равный диаметру анода, *см*; **R**₀ - диаметр медной нити, *мкм*; ρ - удельное сопротивление стекла, *Ом* · *см*. Емкость С _д, равная ~ 2,4 · 10 ⁻³ пФ, существенно мень-

Емкость С _д, равная ~ 2,4 · 10 ~ $n\Phi$, существенно меньше емкости обратной связи предусилителя С₀ и емкости С, равных соответственно ~1,5 и ~15 $n\Phi$.

При изучении работы счетчика с анодом, покрытым диэлектриком, было обнаружено, что амплитудная характеристика - более пологая, а счетная характеристика имеет более протяженное плато, чем у счетчика с обычным анодом. Последнее видно из *рис.* 7, на котором

Рис. 7. Счетные характеристики счетчика с диаметром катода 6 мм при давлении 20 атм. 1 - аргон, обычный анод диаметром 10,4 мкм; 2 - смесь 90% аргона и 10% метана, обычный анод диаметром 10,4 мкм; 3 - аргон, анод с диэлектрическим слоем диаметром 11,5 мкм.

для сравнения приведены счетные характеристики счетчика с обычным анодом диаметром 10,4 *мкм*, заполненного аргоном и смесью аргона с метаном и того же счетчика с анодом, покрытым слоем стекла и имеющим диаметр 11,5 *мкм*, заполненного аргоном при давлении 20 *атм.* Мы обнаружили также, что с увеличением давления газа наклон плато увеличивается и для 100 *атм* плато практически исчезает.

Несмотря на большую протяженность плато счетной характеристики максимальный коэффициент газового усиления для такого счетчика имел величину, характерную для счетчиков с обычным анодом /\$10³ /, заполненных аргоном при соответствующих давлениях.

Постоянная времени $\tau = R_{\rm A}C_{\rm A}$, определяемая емкостью и сопротивлением диэлектрического покрытия, не завнсит от его размеров и определяется только удельным сопротивлением и диэлектрической постоянной вещества покрытия. Величина τ для используемого нами покрытия равна $\epsilon_0 \epsilon \rho \cong 0,5 c$. Такое большое значение τ , определяющее время рассасывания заряда на емкости $C_{\rm A}$, должно приводить к зависимости амплитуды импульса от интенсивности облучения. Однако из-за локальности процессов размножения электронов в счетчике эта зависимость не должна быть сильной. Мы наблюдали, например, уменьшение амплитуды выходного сигнала на $7 \div 10\%$ с увеличением счета от 250 до 500 имп/с при использовании аргона под давлением в 100 атм.

Энергетическое разрешение счетчика сильно зависело от давления, резко ухудшалось с его увеличением. Для давлення 100 атм даже при малых коэффициентах размножения ширина энергетической линии была больше 20%. При этом, как видно из кривой 9 *рис.* 5 для 20 атм аргона, разрешение резко ухудшается с ростом газового усиления.

На основании полученных результатов трудно сделать определенный вывод о возможности пропорционального размножения в таком счетчике, заполненном жидким аргоном. Окончательный ответ на этот вопрос может дать лишь непосредственная постановка такого опыта. В заключение авторы считают своим долгом поблагодарить Б.М.Понтекорво за неизменный интерес к данной тематике и важные обсуждения всех экспериментальных результатов, изложенных в данной статье, а также Е.Н.Русакова за помощь при сборке счетчиков.

Литература

- 1. Derenzo S.E. e.a. Preprint UCRL-19254,1969; Derenzo S.E. e.a. Preprint UCRL-20118,1970; Shibamura E. e.a. Bull of Sci. and Eng.Research.Lab.Waseda Univ..1975, No.69,p.104.
- 2. Гребинник В.Г. и др. ЖЭТФ, 1976, 71, с.417; ОИЯИ, P13-9521, Дубна, 1976.
- Fulbright A.W., Milton J.C.D. Phys.Rev., 1949,76,p.1274; Phys. Rev., 1951,82, p.274; Gilmer T.E., Mace J.R., Palmatier E.D. Rev.Sci.Instr.,1957,28, p.634; Phys.Rev.,1955,97, p.486; Legrand J., Blondel M., Magnier P. Nuclear Instr. and Meth., 1973,p.112, p.101.
- 4. Писарев А.Ф., Писарев В.Ф., Ревенко Г.С. ЖЭТФ, 1972, 63, с.1562; ОИЯИ, Р13-6449, Р13-6450, Дубна, 1972.
- 5. Писарев А.Ф. ОИЯИ, Р13-5838, Дубна, 1971.