

ОБЪЕДИНЕННЫЙ ИНСТИТУТ Ядерных Исследований

Дубна

98-24

P12-98-24

С.Ю.Толмачев, С.Н.Дмитриев, О.Д.Маслов, Л.Г.Молоканова, М.В.Густова, А.В.Сабельников

ОПРЕДЕЛЕНИЕ ЕСТЕСТВЕННЫХ И ИСКУССТВЕННЫХ АКТИНИДОВ В ОБРАЗЦАХ ПРИРОДНОЙ ВОДЫ С ПРИМЕНЕНИЕМ РЕАКЦИИ ФОТОДЕЛЕНИЯ

Направлено в журнал «Радиохимия»

Присутствие актинидов в экосистемах представляет главную опасность для здоровья человека вследствие их высокой радиотоксичности и больших периодов полураспада. Этим объясняется то внимание, которое уделяется их определению в объектах окружающей среды [1–4].

Обычно для анализа трансурановых элементов используются различные варианты нейтронно-активационного анализа, альфа- и масс-спектрометрические методы. Пределы обнаруженяя ²³⁷Np и ²³²Th соответственно составляют (г): 3,8·10⁻¹² и 10⁻⁷ – при α -спектрометрии, 5·10⁻¹³ и 10⁻¹⁰ г – при нейтронно-активационном анализе, 5·10⁻¹³ и 2·10⁻¹² – в случае масс-спектрометрии [5–9].

Природные изотопы урана можно определять с помощью альфаспектрометрии, при этом пределы обнаружения $^{238}U - 6 \cdot 10^{-8} r$, $^{235}U - 10^{-8} r$ [10]. С помощью масс-спектрометрии можно определять 234 , 235 , ^{238}U в количестве не менее 5 $\cdot 10^{-10} r$ [11].

Настоящая работа посвящена разработке метода определения тория и нептуния путем регистрации осколков вынужденного деления ядер с использованием реакции фотоделения и применению этого метода при определении естественных и искусственных актинидов в природной воде.

Экспериментальная часть

Реактивы и изотопы. Используемые в работе концентрированные кислоты (HNO₃, HCl, CH₃COOH) марки "чда" предварительно очищали перегонкой в аппаратуре, изготовленной из тефлона. Разбавление кислот проводили бидистиллированной водой. Исходные растворы ²³²Th (6·10⁻⁴ г/мл), U_{eer.} (10⁻⁶ г/мл) и ²³⁷Np (10⁻⁶ г/мл) готовили растворением точных навесок их азотнокислых солей в 0,5 М HNO₃. Полученные растворы хранили в тефлоновой посуде.

посуде.
В качестве отметчиков использовали изотопы ²³⁴Th, ²³⁷U, ²³⁵Np и ²³⁶Pu.
²³⁴Th извлекали из раствора уранил-нитрата адсорбцией на бумажном фильтре с последующей десорбцией HCl [12]. Изотоп ²³⁵Np был получен на ускорителе У-200 при облучении ²³⁵U (99.993 %)-мишени дейтонами с энергией – 18 МэВ по реакции – ²³⁵U(d, 2n)²³⁵Np [13], ²³⁶Pu – в реакции ²³⁷Np(γ, n)^{236m}Np→²³⁶Pu [14], а ²³⁷U – в реакции ²³⁸U(γ, n)²³⁷U на компактном ускорителе электронов – микротроне MT-25 [15].

Приготовление эталонных образцов. Эталонные образцы ²³²Th, U_{ест.} и ²³⁷Np готовили непосредственно перед экспериментом. Для этого исходные растворы разбавляли 0,5 M HNO₃ до концентраций от 10⁻⁹ до 10⁻¹² г/мл. Аликвоты полученных растворов (4 параллельные пробы) капилляром наносили

1

на рабочую поверхность (2 х 2 см) твердотельного детектора (ТТД). в качестве которого использовали полимерную пленку LEXAN толщиной 175 мкм, и испаряли под ртутной лампой. Далее рабочую поверхность детектора закрывали полимерной пленкой LEXAN, которая также служила в качестве ТТД. Таким образом, анализируемый образец находился между двумя детекторами, что, как было показано в предварительных экспериментах, обеспечивало эффективность регистрации событий фотоделения ядер, равную 75%. Аналогично готовили сборки детекторов с анализируемыми пробами, а также с аликвотами используемых в работе реактивов. Сборки детекторов с анализируемым веществом помещали в цилиндрический держатель, что обеспечивало их одинаковое положение относительно центральной оси гаммапучка. Для контроля распределения потока гамма-квантов по образцам при облучении использовали медные мониторы диаметром 8 мм.

Облучение образцов. Сборку из 10–15 образцов облучали гамма-квантами компактного ускорителя электронов – микротрона МТ-25 при среднем токе электронов – 15 мкА и максимальной энергии электронов – 24,5 МэВ. Время облучения было выбрано на основании предварительных экспериментов по радиационной стойкости материала детектора и составляло 4 часа. По окончании облучения образцы "охлаждали" в течение 12 часов, измеряли активность Си-мониторов и рассчитывали поток у-квантов по образцам сборки.

Травление ТТД. Детекторы промывали $H_2O_{дист.}$ и в течение 1–1,5 часов выдерживали в 6 М NaOH при t = (60±2) °C. Затем детекторы промывали водой и высушивали. Данные условия обеспечивали получение треков длиной 20-25 мкм и диаметром 5–6 мкм. Плотность треков подсчитывали на оптическом микроскопе при увеличении (100–300)Х.

Пробы воды. Пробы воды отбирали из различных источников, расположенных в окрестностях г. Дубны (Московская область). Для предотвращения сорбции исследуемых нуклидов на стенках сосудов пробы подкисляли HNO_{3кони} до рН 1–2 и фильтровали через трековые мембраны с диаметром пор 5 мкм для отделения нерастворимых частиц. Затем проводили радиохимическое выделение актинидов.

Выделение актинидов. Схема выделения актинидов из проб природных вод дана на рис. 1. В образцы объемом от 0.8 л до 1.5 л добавляли нуклиды ²³⁴Th (100 Бк), ²³⁷U (100 Бк), ²³⁶Ри (0,2 Бк) и ²³⁵Np (2 Бк). Растворы тщательно перемешивали и выдерживали при комнатной температуре в течение 3 суток для достижения изотопного равновесия. Далее в растворы добавляли FeCI₃ (концентрация Fe⁺³-ионов в растворах составляла 0,03 мг/мл) и при рН=9 проводили осаждение Fe(OH)₃. Осадок отфильтровывали, промывали 1% раствором NH4OH, после чего растворяли в 20 мл 7,5 М HNO3. К полученному раствору добавляли по 0,2 г N₂H₄·HCl для восстановления Np(V) до Np(IV) и NaNO2 для стабилизации Pu(IV). Затем раствор пропускали через ионообменную колонку с анионитом Dowex-1×8 (B нитратной форме, 100-200 меш, Ø6 мм и h = 70 мм) со скоростью 1 мл/мин. U (VI) и большинство примесей десорбировали 20 мл 7,5 М HNO3.

3

2

ү-спектрометрия ²³⁵Np (75%)

Рис. 1. Радиохимическая схема выделения Th, U, Np и Pu.

Торий в виде Th (IV) элюировали 15 мл 9 М HCl. Затем через колонку пропускали 20 мл 9 М HCl + 0,1 М NH₄I для элюирования плутония в виде Pu(III) и 10 мл 9М HCl для промывки колонки. Np (IV) элюировали раствором 2М HCl (20 мл).

Для дальнейшей очистки урановую фракцию упаривали до влажных солей, и остаток растворяли в 2 мл 7,5 М HNO₃ + 0,1 М KBrO₃ при нагревании. Раствор охлаждали и пропускали через колонку (\emptyset 2 мм и h = 30 мм) с твердым экстрагентом (ТВЭКС), содержащим 10% ТОФО. Колонку промывали 2 мл 7.5 М HNO₃ + 0,1 М KBrO₃ и проводили десорбцию нептуния (2 мл 0,25 М HNO₃ + 3% H₂O₂) и U (VI) (6 каплями 10% NH₄HCO₃). В случае урана десорбат непосредственно из колонки наносили на два ТТД, раствор испаряли и определяли радиохимический выход урана по ²³⁷U.

Ториевую фракцию (15 мл 9 М HCl) упаривали досуха, остаток растворяли в 2 мл 7,5 М HNO₃ и упаривали досуха. Операцию повторяли дважды для полного удаления Cl-ионов. Полученный раствор пропускали через ионообменную микроколонку с Dowex-1×8 (нитратная форма, 100–200 меш, Ø 2 мм и h = 10 мм). Следовые количества урана вымывали 2 мл 7,5 М HNO₃. Торий элюировали из колонки непосредственно на поверхность ТТД 6 каплями (общим объемом около 100 мкл) 9 М HCl.

Плутониевую фракцию (20 мл 0,1 M NH₄I + 9 M HCl) упаривали досуха, остаток растворяли в 2 мл 7,5 M HNO₃. Операцию повторяли дважды для полного удаления Cl-ионов. Полученный раствор пропускали через ионообменную микроколонку с Dowex-1×8 (нитратная форма, 100–200 меш, Ø 2 мм и h = 10 мм). Следовые количества урана вымывали 2 мл 7,5 M HNO₃. Плутоний элюировали из колонки непосредственно на поверхность TTД 6 каплями (общим объемом около 100 мкл) раствора 0,1 M NH₄I + 9 M HCl.

Две нептуниевые фракции объединяли и упаривали досуха. Остаток переводили в ацетатную форму растворением в 1 мл CH₃COOH с последующим упариванием. Полученный осадок растворяли в 6 каплях 4 М CH₃COOH и пропускали через анионнообменную микроколонку (Dowex-1×8 в ацетатной форме, 100–200 меш, \emptyset 2 мм и h = 10 мм). При этом следовые количества урана оставались на смоле, в то время как Np не сорбировался и вымывался 4 каплями 4 М CH₃COOH на TTД.

Результаты и обсуждение

По результатам 12 облучений были построены зависимости количества треков на одном из детекторов от содержания определяемого изотопа. Зависимости для ²³² Th и ²³⁷ Np представлены на рис.2.

Можно видеть, что представленные зависимости являются линейными во всем исследованном интервале концентраций. В случае ²³⁷Np зависимость расположена выше чем для ²³²Th, что и следовало ожидать из соотношения значений сечений реакций фотоделения ²³⁷Np и ²³²Th (2,4 для фотонов с энергией 23-24 MэB).

4

5

Для учета фона в каждой серии экспериментов проводили облучение чистых детекторов, а в двух сериях и детекторов с нанесенными аликвотами используемых в работе реактивов. Во всех случаях фон не превышал 0-1трека/см², что, по-видимому, может быть обусловлено дефектами структуры полимера, а также треками от деления ядер актинидов, содержащихся в веществе детектора.

Исходя из данных рис.2 и значений фона пределы обнаружения ²³²Th и ²³⁷Np были рассчитаны равными 1.10⁻¹³ г и 3.10⁻¹⁴ г, соответственно.

Полученные результаты позволяют оценить пределы обнаружения и ряда других радионуклидов, для которых известны значения сечений реакций фотоделения. Результаты оценок представлены в таблице 1.

Таблица 1. Сечения реакций фотоделения о_f [16, 17, 18] и пределы обнаружения радионуклидов с использованием (γ, f)-реакции

Нуклид	Сечение реакции (ү, f), мб	Предел обнаружения, 10 ¹⁴ г
²³² Th	48-52	10
²³³ U	270	2
²³⁵ U	135	3
²³⁸ U	115-168	5
²³⁷ Np	134-210	3
²³⁹ Pu	350	1,5
²⁴² Pu	0,7	700
²⁴¹ Am	165	5

Метод был использован для определения изотопов ²³²Th, U, ²³⁷Np и ²³⁸Pu в природных водах. Химический выход Th, U, Np и Pu был равен 90%, 90%, 75%

и 86%, соответственно.

٤.

0

Результаты анализа ²³²Th. U. ²³⁷Np и Pu в воде различных источников даны в таблице 2.

Takana A Can	232Th	7.1	237	238 m			
гаолица 2. Соде	ержание тп.	υ.	пр и	гивв	оде	различных источнико	۶E

Источник воды	²³² Th	U	²³⁷ Np	²³⁸ Pu
	·10 ¹⁰ г/мл·	·10 ^{то} г/мл	·10 ¹⁶ г/мл	·10 ¹⁷ г/мл
Снег	0.02±0.01	0.37±0.02	<1	<3
Р. Волга	0,18±0.02	4,9±0.02	<1	<3
Пруд	2,6±0.2	45.8±0.2	2.6±0.5	<3
Колодец	2.3±0.2	38.7±0.2	1.6±0.8	<3

· Заключение

Разработан высокочувствительный метод определения актинидных элементов, основанный на регистрации событий фотоделения ядер с помощью твердотельных трековых детекторов.

Метод позволяет работать с малыми количествами анализируемого вещества, что облегчает проведение химических операций по разделению и выделению элементов, исследовать поведение элементов в окружающей среде и биологических объектах на болеее низком пределе обнаружения, обеспечивает возможность выполнения прямого анализа образцов на содержание общего количества элементов, делящихся под действием гамма-квантов, или U и Th, при содержании Pu и Np < 10⁻¹¹ г/л, или только U при содержании Th на два порядка меньше, чем урана.

Развитие метода связано с исследованием твердотельных трековых детекторов на основе других полимеров (с содержанием урана < 10⁻¹⁴ г/г), которые превосходили бы LEXAN по радиационной стойкости. Это позволило бы использовать более интенсивный фотонный поток или увеличить время облучения и соответственно получить пределы обнаружения актинидов на порядок величины меньше, чем были получены в настоящей работе.

Литература

- Павлоцкая Ф.И., Поликарпов Г.Г. Итоги науки и техники. Сер. "Радиационная биология", М.: ВИНИТИ, 1983, т. 4, с. 99–141.
- 2. Павлоцкая Ф.И. ЖАХ, 1997, т. 52, № 2. с.126-143.
- Мясоедов Б.Ф., Новиков А.П., Павлоцкая Ф.И. ЖАХ, 1996, т. 51, №1. с.124-130.
- 4. Павлоцкая Ф.И., Мясоедов Б.Ф. Радиохимия, 1996, т. 38. № 3, с. 193-208.
- 5. Rosenberg R.J. J. Radioanal. Nucl. Chem., Articles, 1993, v.171, №. 2, p. 465-482.
- 6. McCabe W.J., DitchburnR.G., Whitehead N.E. J.Radioanal.Nucl.Chem., Articles,

1992, v.159, p.267.

- 7. Bellido L.F., Arezzo B. de C. J. Radioanal. Nucl. Chem., Articles, 1985, v. 92, p. 151.
- 8. Igarashi Y., Kim C-K., Takaku Y. et al. Anal. Science, 1990, v.6, p.157–163.
- 9. Otgonsuren O., Enchjin L., Gerbish Sh. et al. International Workshop "Solid State Nuclear Track Detectors and their Applications", D13-90-479, Dubna: 1990, p.135.
- 10. Goldstein S.J., Rodriquez J.M., Lujan N. Health Phisics, 1997, v. 72, Nº 1, p.10.
- 11. Bell M.G., Gladney E.S. In: Health and environmental chemistry: Analytical techniques, data management, and quality surance. Los Alamos, NM: Los Alamos National Laboratory; Report LA 1995, v.111, ER290-1-ER290-11.
- 12. Старик И.Е. Основы радиохимии, Л.: Наука, 1969. с. 167.
- 13. Dmitriev S.N., Zaitseva N.G., Starodub G.Ya. et al. Scientific Report 1995-1996. FLNR, JINR, Dubna, 1997, p.336.
- 14. Дмитриев С.Н., Маслов О.Д., Сабельников А.В. и др. Дубна, ОИЯИ, P12-97-359. 1997.
- 15. Гэрбиш Ш., Маслов О.Д., Белов А.Г. и др. XTT, 1992, т.3, с.127–133.
- 16. Блохин А.И., Булеева Н.Н., Насырова С.М. и др. Вопросы атомной науки и техники. Серия: Ядерные константы, 1992, Вып. 3-4. с. 3-54.
- 17. Handbook on Nuclear Activation Cross-Sections. Technical Rep., Ser. Nº 156, Vienna: IAEA, 1974, p. 551-553.
- 18. Горбачев В.М., Замятнин Ю.С., Лбов А.А. Взаимодействие излучений с
- ядрами тяжелых элементов и деление ядер. Справочник, М.: Атомиздат, 1976, c. 101.

Рукопись поступила в издательский отдел 17 февраля 1998 года.