<u>C449</u> A-374

1466/2-70

СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ АУБНА

19/10-76

P12 - 9454

Б.Айхлер, В.П.Доманов, И.Звара

ОПРЕДЕЛЕНИЕ ТЕПЛОТЫ АДСОРБЦИИ НА ОСНОВЕ ТЕРМОХРОМАТОГРАФИЧЕСКИХ ДАННЫХ

II. Хлориды металлов. Адсорбция на кварце

P12 - 9454

Б.Айхлер, В.П.Доманов, И.Звара

ОПРЕДЕЛЕНИЕ ТЕПЛОТЫ АДСОРБЦИИ НА ОСНОВЕ ТЕРМОХРОМАТОГРАФИЧЕСКИХ ДАННЫХ

II. Хлориды металлов. Адсорбция на кварце

Так как многие металлы образуют сравнительно летучие безводные хлориды, существует интерес к хроматографии и термохроматографии хлоридов как к методам аналитического и препаративного разделения элементов. Эти методы были использованы для радиохимического анализа продуктов ядерных реакций/1,23/. Попутно в нескольких работах сделана попытка извлечь из экспериментальных данных сведения о теплоте / энтальпии/ адсорбции. В дальнейшем будем применять символы Q или -∆Н° - в зависимости от принятого авторами цитируемой работы обозначения. Наиболее строгим методом является нахождение ΔH_{a}° по термодинамическим уравнениям, которые связывают изменение времени удерживания с изменением температуры изотермической колонки. Этот метод использовался в работе Поммира и др./4/ и Рудольфа и Бэхмана/5/.

Более "просто" можно оценить Q_a, используя молекулярно-динамическую картину адсорбцин^{/6/}.Предполагается, что степени заполнения поверхности «1 и что при каждом столкновении с поверхностью молекула адсорбируется и находится в адсорбированном состоянии в те-

чение времени $\tau = \tau_0 \cdot e^{\frac{Q_a}{RT}}$, где τ_0 - период колебаний адсорбированной молекулы в направлении, перпендикулярном поверхности / $\tau_0 \approx 10^{-13} \cdot 10^{-12} c/$.

Такое предположение эквивалентно допущению, что адсорбированное состояние представляет собой идеальный двумерный газ /образующийся из идеального трехмерного газа/, с чем связано вполне определенное изменение энтропии при адсорбции /7/.

В работе Зваровой и др/8/ по значениям констант адсорбционного равновесия, взятых из высокотемпера-

турной ветви фронтальной термохроматограммы, значения теплот адсорбции хлоридов некоторых металлов определялись непосредственно из молекулярно-динамического уравнения изобары адсорбции.

В работе Чубуркова и др. /9/ и Звары и др/1/ значения Q_а находили по величине времени удерживания компонента t, в изотермической колонке.

Меринис и др. /10/определяли Q_а по скорости перемещения адсорбционных пиков вдоль температурного гралиента.

В первой работе этой серии/7/. исходя из динамического уравнения идеальной линейной газовой хроматографии, было выведено соотношение, связывающее - ΔH_{o}° с температурой осаждения вещества Т_А для случая термохроматографической колонки с постоянным градиентом температуры.

Таким образом, теплота адсорбции является, помимо Т,, аргументом константы адсорбционного равновесия, времени удерживания в хроматографической колонке, скорости передвижения адсорбционной зоны в термохроматографической колонке и т.д. Отсюда многообразие методов оценки ΔH_a° .

Целью настоящей работы является анализ и сопоставление литературных значений адсорбции со значениями, полученными на основании метода, предложенного в /7/ . Этим методом обсчитывались как наши экспериментальные данные /12/ так и данные других авторов /2,3,8,10,15/.

Основные положения

Интегрирование динамического уравнения идеальной линейной газовой хроматографии приводит /7/ в случае линейного температурного градиента к соотношению, связывающему параметры термохроматографического эксперимента с теплотой адсорбции:

$$-\frac{\mathbf{t}_{r}\cdot\mathbf{v}_{0}\cdot\mathbf{\alpha}}{\mathbf{s}_{1}\cdot\mathbf{T}_{0}\cdot\exp\frac{\Delta S_{a}^{\circ}}{R}}=E_{i}^{*}\left(\frac{-\Delta H_{a}^{\circ}}{R T_{A}}\right)-E_{i}^{*}\left(\frac{-\Delta H_{a}^{\circ}}{R T_{S}}\right), \qquad /1/$$

где t, - время опыта / мин/; v₀ - объемный расход газа-носителя / мл. мин-1/; а - температурный градиент /град. см⁻¹/ α <0; T_A - температура осаждения /°K/; s₁ - поверхность единичного участка колонки / см²/; ΔS_a° - стандартная энтропия адсорбции / кал. мол⁻¹ град -1/; ΔH[°]_a - стандартная энтальпия адсорбции / ккал. моль-1/; T_S - температура стартового участка / K/; T₀ - 298 K; Е:*(х)- интегральная показательная функция.

Применяя уравнение /1/ к анализу данных, удобно пользоваться его графическим представлением /7/. где левая часть /1/ представлена как функция от температуры осаждения для различных значений теплот адсорбции.

После введения ряда приближений из уравнения /1/ следует, что

$$T_A \approx -c_n \Delta H_a^\circ, /2/$$

и при предельном упрощении следует ожидать, что

$$\Delta H_a^{\circ} = -\Delta H_{\phi, \Pi}^{\circ} + k_n .$$
 /3/

Здесь $\Delta H^{\circ}_{\Phi,\Pi}$ - скрытая теплота фазового перехода /кристалл \rightarrow газ или жидк. \rightarrow газ/, а с_п и k_n - эмпирические константы. с, определяется по наклону функции / точнее, корреляции/

$$\mathbf{T}_{\mathbf{A}} = \mathbf{c}_{\mathbf{n}} \left(\Delta \mathbf{H}_{\mathbf{\Phi}.\Pi}^{\circ} - \mathbf{k}_{\mathbf{n}} \right) , \qquad /4/$$

а k_n - по отрезку ординаты, равному - k_n c_n.

Из уравнения /1/ можно вывести соотношение, связывающее теплоту адсорбции со скоростью перемещения адсорбционной зоны вдоль линейного температурного градиента:

$$\ell n t_r = -\frac{\Delta H^{\circ}}{R T_A} + K , \qquad /5/$$

где

 $K = \frac{\Delta S_a^{\circ}}{R} + \ell n \left[\frac{\frac{s}{V} \cdot T_0}{u_0 (-\alpha)} \right] .$

Здесь: V - свободный объем колонки $/cm^3/$, u₀ - линейная скорость газа-носителя при T₀ = 298°K, s - внутренння поверхность колонки $/cm^2/$.

Следовательно, теплоту адсорбции можно определить из уравнения /5/ по наклону функции $ln t_r = f(\frac{1}{T_A})$.

Аналогичное выражение получено и использовано в работе / 10/.

Результаты и обсуждения

На основе экспериментальных данных наших работ/11/ и/12/для функциональной зависимости /4/ методом наименьших квадратов были найдены значения констант с_n и k_n.В качестве скрытой теплоты перехода при различных температурах можно использовать теплоту возгонки или испарения.

В табл. 1 представлены различные значения констант уравнений /3/ и /4/ в зависимости от выбора скрытой теплоты перехода^{/13/}и /14/.

Константы эмпирических соотношений (3) и (4)

Таблица 1

ккал.моль-1 Коэф-Теплота Температура град.моль n перехода ккал фазового фициент перехода корреляции 1 $\Delta H^{\circ}_{BO3\Gamma}$. 298[°]K 0,95 11.97+0.36 -9.7+1.3 2 **ДН°** возг. 13,89+0,74 -5.7+2.1 0,91 т.пл. 3 ДН°исп. 298^oK 13,98+0,70 -6,2+1,9 0,93 4 АН°исп. 17,53+0,68 -4.6+1.30.94 т.кип.

В табл. 2 приведены значения теплот адсорбции хлоридов, полученные по уравнениям /2/ и /3/, а также средние квадратичные ошибки их определения. Вычисленные значения теплот адсорбции систематически изменяются в соответствии с выбором теплот переходов, которые использовались при определении с_п и k_п/см. табл. 2/. В табл. З даны величины теплот адсорбции, вычисленные по уравнению /1/. При вычислениях за s_1 принималась геометрическая внутренняя поверхность отрезка единичной длины. В случае капилляра $s_1 = \pi d / d$ - внутренний диаметр капилляра/. Для хлоридов средняя энтропия адсорбции ΔS_a° оценивалась в - 40 кал. мол.⁻¹ град.⁻¹. В работах /2, 3, 8, 10, 15/ точность определения T_A составляет 10-20°.

Несмотря на различия экспериментальных условий, вычисленные значения ΔH_a° в большинстве случаев хорошо совпадают. Отклонения становятся заметными в том случае, если степень окисления транспортирующихся продуктов сильно зависит от хлорирующей способности газаносителя. Например, в тех случаях, когда хлор не используется в качестве газа-носителя, для Се, Ра, U и Ru были найдены более высокие температуры осаждения и, соответственно, большие значения теплот адсорбции.

Результаты нашей работы 12 показывают, что между вычисленной по уравнению /1/ теплотой адсорбции хлоридов и скрытыми теплотами перехода $\Lambda H^{\circ}_{BO 3\Gamma}$. /при $T = 298^{\circ}$ /, $\Lambda H^{\circ}_{BO 3\Gamma}$./при температуре плавления/ и $\Lambda H^{\circ}_{MC\Pi}$. /при температуре кипения/ существует корреляция /*табл.* 4/. Приведенные в *табл.* 4 соотношения позволяют оценить теплоту адсорбции какого-либо компонента на кварце в атмосфере хлора, если известна одна из скрытых теплот перехода.

На *рис.* 1 показаны наши экспериментальные данные о температурах осаждения хлоридов Cs, Рьи Ві в зависимости от продолжительности опыта. Кроме этого, представлены теоретические зависимости /прямые/ температуры осаждения соединений с данными теплотами адсорбции от времени, вычисленные по уравнению /1/.

В табл. 5 представлены результаты расчетов теплот адсорбции хлоридов Cs, Pb и Bi по уравнению /5/ и по уравнению /1/. Значения теплот адсорбции, найденные вторым методом, находятся в хорошем соответствии с данными табл. 3. В то же время расчет теплоты адсорбции по скорости перемещения адсорбционной зоны вдоль температурного градиента приводит к сильно отличающимся результатам.

Как видно из изменения наклона теоретически рассчитанных зависимостей / puc. 1/, для определения теплоты адсорбции по названному методу при $\Delta H_a^{\circ} > 20$ ккал/моль нужна высокая точность определения положения зоны адсорбции, большой диапазон времен опыта и высокая устойчивость условий эксперимента. Данные puc. 1 и результаты вычислений, представленные в табл. 5, показывают, что температура осаждения "чувствительнее" характеризует теплоту адсорбции, чем скорость перемещения адсорбционной зоны.

Экспериментально найденные зависимости подтверждают, что для веществ с известной теплотой адсорбции уравнение /1/ позволяет приблизительно оценить зоны их осаждения на температурном градиенте в зависимости от времени.

Заключение

Предложенные методы определения теплоты адсорбции основываются на идеализированной модели процесса транспортировки газов через колонку при дополнительных упрощающих предположениях. Поэтому могут быть получены не "истинные" значения теплот адсорбции, а некоторые эффективные величины, представляющие, однако, самосогласованный набор, пригодный для практического использования. Для оценки данного метода необходимо рассмотрение возможных ошибок и сравнение между собой значений теплот адсорбции, найденных по уравнению /1/ и полученных другими методами.

Областью допустимых ошибок табличных значений являются средние квадратичные ошибки, характеризующие только случайные отклонения. Найденные нами и в работе^{/10/} с использованием уравнений типа /5/ величины теплот адсорбции находятся в плохом соответствии с данными, полученными другими методами / *табл. 2,3,5,6/*, и последовательностью осаждения различных хлоридов в колонке с температурным градиентом. Несмотря на хорошее физическое обоснование, применение этого способа оказывается нецелесообразным.

Таблица 2 .

Значения теплот адсорбции - ΔH^o_a (ккал/моль) некоторых хлоридов, вычисленные по уравнениям (2) и (3)

33	Хлорид	I. [K ⁰]	по ΔН ⁰ возг.	(при T = 298 ⁰)	по △ H ⁰ возг.	(при т. пл.)	по АНО исп.	(при т.кып.)
μц			C ^I	K _I	°2	к ₂	C.	K4
			II,97 <u>+</u> 0,36	-9,7 <u>+</u> I,3	I3,89 <u>+</u> 0,74	-5,7 <u>+</u> 2,I	17,53 ± 0,68	-4,6±1,3
I	Cacl	1173 <u>+</u> 50	98,0 <u>+</u> 5,I	87,2 ± 3,5	84,5 <u>+ 4,4</u>		66,9 <u>+</u> 3,5	
2	Sett,	739 <u>+</u> 15	$61,7 \pm 2,4$	•	53,2 <u>+</u> 3,1		42,2 <u>+</u> I,9	
3	Mnck	783 <u>+</u> 10	$65,4 \pm 2,1$	61,7 <u>+</u> 3,3	56,4 ± 3,1		44,7 <u>+</u> I,8	4 I,8 <u>+</u> 3, 9
4		628 ± 15	55,0 ± 2,1	~ ~ ~ ~	47,4 ± 2,8		37,5 <u>+</u> I,7	
2	7.0	763 ± 10	$63,7 \pm 2,1$	68,8 <u>+</u> 3,3	54,9 <u>+</u> 3,0	59,5 <u>+</u> 4,1	42,4 <u>+</u> I,7	54,5 <u>+</u> 2,9
	DLCI	263 ± 10	$48,7 \pm 1,7$	47,7 <u>+</u> 2,8	42,0 ± 2,4	42,8 <u>+</u> 3,6	33,3 <u>+</u> I,4	34,7 <u>+</u> 4,9
	Sall	773 <u>+</u> 40	64,6 ± 3,9	63,2 <u>+</u> 2,3	55,7 ± 4,1	54,3 <u>+</u> 3,1	44,I <u>+</u> 2,9	45,8 <u>+</u> 3,9
0		1223 + 40	102,2 + 4,6	91,7 <u>+</u> 3,3	$66,1 \pm 5,5$		69,8 <u>+</u> 3,6	
70 T	7-01	90 <u>5 +</u> 50	$75_{9}4 \pm 5_{9}4$	27 <u>+</u> 3,3	0, 0 + 4, 1	20 h 0 T	$51,5 \pm 2,1$	
10	LFCL	403 + 10	$30,7 \pm 1,4$	37,0 <u>+</u> 2,0 22.5 ⋅ 2.2	$33,3 \pm 1,9$	30,4 <u>+</u> 3,1	26,4 <u>+</u> 1,2	31,5 <u>+</u> 2,9
12	Mo	358 TO		5215 <u>+</u> 212	25,7 + 2,1	25,7 <u>+</u> 3,1	$23,6 \pm 1,5$	19 , 3 <u>+</u> 2,7
13	TeCt	408 4 30	34 7 . 27		20, 0 + 1, 0		20,4 ± 1,0	
T4	Ru	583 ± 10	$\frac{y_{i1}}{487 + 17}$				23,3 <u>+</u> 1,9	
I5	Rhola	883 + 25	738 3 1		636 4 38		55,5 <u>+</u> 1,4	
I6	Pd Ct.	863 + TO	72.2 + 2.3		42 3 + 2.9	177.33	$30,4 \pm 2,4$	26 E 0 T
17	Aace	893 + 50	74.6 + 4.8	63 3 + 5.3	64.3 + 5.0	56 9 4 5 T	50 0 · 2 5	30,7 ± 3,1
18	cace.	633 + 50	52.9 + 4.5	50.9 ± 3.3	45.6 + 3.7	ло, у <u>т</u> у, т	36 7 . 3 3	40,7 <u>+</u> 5,9 35,9 - 0,7
19	InCL	623 + 45	52.I i 4.I	49.7 + 2.3	44.9 + 4.0	43 5 A A T	355.20	$33,0 \pm 2,7$
20	SbCl	333 + 20	27.8 + 1.9	······································	24.0 + T.9	+>,> <u>+</u> +,1		44,0 <u>+</u> 2,9
21	Te Cl.	448 + 5	37.4 + 1.2	37.2 + 2.9	32.3 + L.8	30.0 + 3.6	26.6 + 1.0	20,5 + 2,5
22	CsCl	683 + 20	57.I + 2.4	59.7 + 3.3	49.2 + 3.0	54.3 + 4.T	$20,0 \pm 1,0$	25,0 ± 5,4
23	Back	II73 ± 20	98.0 + 3.4	88.7 + 3.3	84.5 + 4.7		66.9 + 2.9	63 2 . 2 0
24	Lace	II20 ± 40	93,0 + 4,4	88.7 + 3.3	80.1 + 5.2	77.0 + 3.6	63.5 ± 3.4	0,2 + 2,9
2 5	TH CE	943 <u>+</u> IO	78,7 <u>+</u> 2,5	82,4 + 3,3	67.8 + 3.7		53.8 + 2.2	
2 6	Ce	893 <u>+</u> 20	74,6 <u>+</u> 2,8		64,3 + 3,7		50.9 + 2.3	
27	Yb Cl ₃	903 <u>+</u> 10	75,4 <u>+</u> 2,4		65,0 ± 3,5		51.5 + 2.1	
28	Luce,	873 <u>+</u> IO	72,9 + 2,4	80,7 <u>+</u> 3,3	62,8 ± 3,4		49.8 + 2.0	
29	Htcu	453 <u>+</u> 30	37,5 <u>+</u> 2,8	34,8 <u>+</u> 2,8	32,6 + 2,8	29,5 ± 3,1	25,8 + I,9	30.2 + 2.9
30	Ŵ	353 <u>+</u> IO	29,5 <u>+</u> I,2	_	25,4 <u>+</u> I,5		$20, 1 \pm 1, 0$	· - · ·
31	ReCls	3I3 <u>+</u> 5	26,I <u>+</u> 0,9	22,7 <u>+</u> 3,0	22,7 ± 0,8		$18,0 \pm 0,6$	
32	Os	393 <u>+</u> 5	32,8 <u>+</u> I,I		28,3 <u>+</u> I,5		22,4 ± 1,0	1
33	I۲	1008 <u>+</u> 20	84,2 <u>+</u> 3,I		72,6 <u>+</u> 2,6		57,5 + 2,I	
34	Pt	803 <u>+</u> 50	67,I <u>+</u> 4,7	•	57,8 <u>+</u> 4,0		45,8 <u>+</u> 3,2	
35	AuCl ₃	503 <u>+</u> 20	42,0 <u>+</u> 2,I	39,2 <u>+</u> 3,3	36,2 <u>+</u> 2,4	•	28,7 <u>+</u> 1,6	
36	HgCl2	353 <u>+</u> 20	29,5 <u>+</u> I,9	29,7 <u>+</u> I,8 🙀	25,4 <u>+</u> 2,0	24,3 + 2,6	20,I + I.4	20.3 + 2.3
37	TICE	438 <u>+ 2</u> 0	36,6 <u>+</u> I,8	42,I <u>+</u> 2,I	3I,5 + 2,I	36,4 ± 3,1	25,0 + I,4	31.0 + 2.9
36	PbCl ₂	588 <u>+</u> 25	49,I <u>+</u> 2,6	54,7 <u>+</u> 3,3	42,3 + 2,9	47,7 ± 3,3	33,5 <u>+</u> 2,0	36,5 + 2.I
39	Bi Cl ₃	423 <u>+</u> 20	35,3 <u>+</u> I,8	39,4 <u>+</u> 3,3	30,5 ± 2,0		24,I <u>+</u> I,4	23,5 ± 3,4
40	PoCly	563 <u>+</u> 20	47,0 <u>+</u> 2,2		40,5 + 2,6		· - ·	• • •

Таблица 3 (продолжение)

Таблица З

Значения теплот адсорбции некоторых хлоридов, вычисленные по уравнению (1) на основании литературных данных о температурах осаждения

Элемент	Ссняка	Газ-носитель	Адсорбент	Температура осаждения	$-\Delta H_{G}^{O}$ [KEAA MORE]
Ca	/12/	Cle + CCl	кварц	1173*50	59,6 [±] 2,6
Sc	/I2/	- • - 1		739 <u>+</u> 15	37,4+0,9
Mn	/12/	- " -	- * -	783 <u>+</u> 10	39,7 <u>+</u> 0,5
L.	/12/	- * -	- * -	433+20	22,5 <u>+</u> 1,0
10	/10/	Cl ₂	• -	433	23,8
Co	/12/	Cl2 + CCl4	- * -	658 <u>+</u> I5	33,3 <u>+</u> 0,8
Ni	/12/	- • -	- * -	763 <u>+</u> 10	38,3 <u>+</u> 0,5
Zn	/12/	- • -	- * -	583 <u>+</u> I0	29,9 <u>+</u> 0,5
Rb	/12/	- * -		773+40	39,3 <u>+</u> 2,I
Sr	/12/		" -	I223 <u>+</u> 40	62,0 <u>+</u> 2,I
Y	/12/		- " -	903 <u>+</u> 30	45,8 <u>+</u> I,5
Z٢	/12/	- "	- " -	463 <u>+</u> 10	22,8 <u>+</u> 0,5
	/12/	- * -	- * -	416 <u>+</u> 20	2 I,I<u>+</u>I, 0
Nb	/ 8/	SOCe	- * -	463	23,3
	/ 8/	SOCI,	CTERRO	373	18,7
Mo	/I2/	Cl, +CCl,	кварц	358 <u>+</u> I0	18,1+0,5
TC	/12/	- • · ·	- * -	408 <u>+</u> 30	20,6 <u>+</u> I,5
Du	/12/	- " -	- * -	583 <u>+</u> I0	29,6+0,5
ки	/15/	SOCL	- " -	708	36,8
Rh	/12/	Cla+CCly	- • -	883 <u>+</u> 25	44,9 <u>+</u> I,3
Pd	/12/	- * - `	- * -	863 <u>+</u> I0	43,7+0,5
Ag	/I2/	- * -	- * -	893 <u>+</u> 50	45, 3+2,6
Cd	/12/	- * -		633 <u>+</u> 50	32,0 <u>+</u> 2,6
Tn	/12/	- * -	- " -	623 <u>+</u> 45	31,5+2,3
10	/ 9/	SOCe2	CTEKRO	603	30,6
CL	/10/	Cl ₂	квард	328	18,1
20	/12/	$Cl_2 + CCl_4$	_ * -	333 <u>+</u> 20	I7,0 <u>+</u> I,0
Te	/12/	_ " _	_ * ~	448 <u>+</u> 5	22,8+0,3
	/12/	- * -	- * -	683 <u>+</u> 20	34,5 <u>+</u> I,0
Cs	/10/	Cl ₂	- " -	623	33,9
	/15/	Ar+SOCl2	_ " _	563	3I,I
Ва	/12/	Cl2+CCl4	- * -	1173 <u>+</u> 20	59,6 <u>+</u> I,0
	/12/	- * -	- • -	III3 <u>+4</u> 0	56,5 <u>+</u> 2,I
La	/I5/	SOCL	- * -	1048	57,6
	/10/	Cl2+CCl	- * -	938	51,4
		,			

Элемент	Ссылка	Газ - носитель	Адсорбент	Температура осаждения	- AHO KKAA
	/10/	Cl ₂ + CCl ₄	кварц	718	39,3
Ce	/15/	SOCE	- " -	918	50,6
	/12/	Cla + CCly	_ * _	893 <u>+</u> 20	45,3
Th	/12/		- " -	943 <u>+</u> 10	47,9 <u>+</u> 0,5
10	/10/	- • -		793	43,2
<u>Үь</u>	/12/	- " -	- " -	903 <u>+</u> 10	45,9 <u>+</u> 0,5
1 m	/10/	- * -	- * -	793	43,2
	/12/	- * -	- " -	873 <u>+</u> 10	44,2
	/12/	- * -	- * -	453 <u>+</u> 30	22,9 <u>+</u> I,5
Hf	/ 8/	SOCLE	стекло	463	23,3
	/ 8/	SOCE + NOCE		498	25,8
w	/12/	Cl2 + CCl4	кварц	353 <u>+</u> 10	18,0 <u>+</u> 0,5
	/ 3/	Cl ₂		353	20,9
	/10/	Cl ₂	- • -	283	15,5
Re	/ 3/	- * -		288	16,2
	/12/	$C\ell_2 + CC\ell_4$	- " -	315+5	16,1 <u>+</u> 0,3
	/10/	Cl ₂	- * -	333	18,4
0s	/ 3/	- " -	- " -	333	18 ,6
	/12/	$Cl_2 + CCl_4$	_ • •	<u>393+5</u>	19,9 <u>+</u> 0,3
	/ 3/	Cl2	- " -	848	50,I
I٢	/10/	- " -	- " -	823	45,1
	/12/	Cl2+CCl4	<u> </u>	1008±20	51,1 <u>+</u> 1,0
	/ 3/	Cl ₂	- " -	543	32,0
Pt	/10/	- * -		548	30,2
	/12/	$Cl_2 + CCl_3$		803 <u>+</u> 50	40,5+2,6
<u>a.</u>	/ 3/	Cle	- " -	463	26,0
HU	/12/	Cl2+CCl4	- " -	503 <u>+</u> 20	25,4 <u>+</u> 1,0
Нg	/I2/	- " -	- " -	353 <u>+</u> 20	18,0 <u>+</u> 1,0
TE	/12/			438 <u>+</u> 15	22,2+0,9
РЬ	/12/			588 <u>+</u> 25	29,8 <u>+</u> 1,3
Bi	/12/			42 <u>3+</u> 15	21,4+0,9
	/12/			<u> </u>	20,0+1,0
	/ 9/	SOCE2 + NECE5	CTORNO	703	35,7
Th	/ 9/	SUCle+ZrCl4	- • -	673	34,1
	/ 2/	Ct2 + CCt	кварц	623	34 1
	/10/			02.9	24,1 20 I
	/ 9/	SOCE2	CTERAO	573	29,1
Pa	/ 9/	50002+ NOCE5		368	29,1
	/10/		кварц	368	20,4
		000 + 7-00		653	35.7
	1 9/	SUCK2+ LICK	CIEKAU Krann	633	34.T
TI	1 2/	$C\ell_2 + C\ell_4$	- " -	633	38.8
U 1			-		

12

Таблица 4

Корреляция между теплотой адсорбции и скрытыми теплотами фазового перехода

	Температура фазового перехода
- ΔH ^O = (0,655 <u>+</u> 0,042) ΔH ^O возг. +(4,3 <u>+</u> 2,I)0,962;	298 ⁰ К
$- \Delta H^0_{\alpha} = (0,680\pm0,051) \Delta H^0$ BO3r. +(5,2±2,8)0,966;	т.плав.
- ΔH ⁰ = (0,835±0,073) ΔH ⁰ исп. +(5,7±2,4)0,94I	T.KHI.

Таблица 5

Результаты определения теплот адсорбции хлоридов Cs, Pb и B; по скорости перемещения адсорбционной зоны вдоль линейного температурного градиента (по уравнению(5))и по температуре осаждения (по уравнению (1))

Хлорид	Уравне ние	Время /ч/	$- \Delta H_{\alpha}^{0}$ [KRAR/MORS]
	(I)	0,5 0,75	35,6 35,0
1 Carp		0,75 L.O	34,9 34,4
0300		I,5	33,3
	(5)	2,5	33,4 16,0 <u>+</u> 2,0
рьсе,	(1)	0,17 0,33 0,75	34,5 34,0 33,2
	(5)	1.0	15,1 ± 2,5
Bi Cl ₃	(1)	0,33 0,67 I,33 2,66	22,I 21,6 21,3 21,4
	(5)		13,5 <u>+</u> 2,5

Литературные данные о теплотах адсорбции хлоридов некоторых металлов

Элемент	Ссылка	Хлорирудщий агент	Адсорбент	Теплота адсорбции - Δ Н ⁰ (ккал/моль)
Na	/1/	NbCls + Zr Cly	Стекло	35,0 <u>+</u> 1,0
Sc	/1/	NbCls + ZrCly	- * -	36,0 + 2,0
	/4/		Графит	I4,3
7r	/1/	NbCls + ZrCly	CTERAO	20,0
A 1	/5/	CCE.	Кварц	21,6 ± 2,3
	/8/	SOCe	Стекло	18,0
l	/9/	SOCl2	_ * _	17,4
Nb	/1/	NbCls + ZrCly	- * -	18,0
	/4/	-	Графит	13,8
	/5/	CCe4	Кварц	23,7 <u>+</u> 2,5
MO	/5/	CCe.	- * -	17,2 <u>+</u> 3,1
	/8/	SOCE.	CTORAO	29,0
In	/1/	NbCls+ZrCl4	- * -	31,0
_ ,,	/9/	SOCla	_ * -	30,6
Sb	/10/	Cl ₂	Кварц	55,0
Te	/5/	CCC4	- * -	20,3 <u>+</u> 2,7
CS	/10/	Cle	*	95,0
Ce	/10/	Cl2+CCl4	- • -	20,0
Th	11/	NbCls+ZrCly	CTERNO	38
	/8/	SOCE	- " -	22,3
1	/8/	SOCE +NbCE	- • -	23,0
H 	/1/	NbCls+ZrCly	- * -	20,0
1	/9/	SOCI	- * -	21,0
	/8/	Soce.	- * -	20,0
Πα	14/	-	Графит	13,5
	/8/	SOCL +NbCl5	CTERRO	36,7
Th	/8/	SOCL. +7rCL.	- * -	32,6
	1/1/	NbCla+ZrClu	- • -	<u>34,7 ± 0,3</u>
	/8/	SOCE.	- • -	29,5
Da	/8/	SOCE + NbCE	- * -	29,1
ru	710/	Cl. + CCl.	Кварц	115,0
U	1 /8/	SOCE + ZrCL4	CTOREO	31,8
Cf	/1/	NbCls + ZrClu	_ " -	38
Fe	1/1/		- • -	38
L Ku	11/	H H H	- * -	21,5 <u>+</u> 1,5

При выводе соотношений /2/ и /3/ сделан ряд сильно упрощающих допущений, которые могут привести к большим систематическим ошибкам. Выбор скрытой теплоты перехода делается произвольно. Это, конечно, приводит к систематической ошибке, общая ширина вариации которой может достигать 30%, но полученные результаты

Таблица 6

соответствуют последовательности осаждения в колонке с температурным градиентом. Хорошее совпадение значений теплот адсорбции в случае использования в качестве скрытой теплоты перехода $\Delta H_{\rm MCR}^{\circ}$ /при температуре кипения/ в уравнении /4/ с вычисленными значениями / табл. 4.6/ является, по-видимому, случайным. Поэтому для вычисления теплоты адсорбции по уравнению /4/ заранее нельзя отдать предпочтение одной из скрытых теплот перехода. Метод, описываемый уравнениями /2/-/4/, пригоден лишь для приблизительных оценок теплоты адсорбции.

Определение теплоты адсорбции по уравнению /1/ при известной температуре осаждения нужно считать наиболее точным методом, т.к. результаты хорошо согласуются с литературными данными, которые получены другими способами / табл. 4.6/ и, в частности, термодинамическими.

В заключение нужно проверить влияние изменения переменных уравнения /1/ на точность вычисления теплоты адсорбции. На рис. 2 для определения теплоты адсорбции гипотетических элементов температура осаждения представлена как функция отдельных независимых пере-

менных ΔS_a° или $\exp \frac{\Delta S_a^{\circ}}{R}$, s , t_r , \overline{v}_0 и α . При этом принимались следующие модельные условия: $t_r = 60$ мин; $\overline{v}_0 = 20$ мл.мин⁻¹; $\alpha = -20$ град.см⁻¹; s = 10 см²; $\Delta S^{\circ} = -41$ кал.моль⁻¹ · град⁻¹; $T_s = 1273^{\circ}K$.

Воздействия всех возможных случайных отклонений незначительны по сравнению с систематическими ошибками при определении средней величины поверхности и энтропии адсорбции. Поскольку за s1 принималась геометрическая поверхность адсорбента, а за ΔS°_{a} - значение, отвечающее большей подвижности молекул адсорбата, то по представленным зависимостям / рис. 2/ можно оценить, скорее, верхние границы ΔH_a° . Систематическая ошибка может, по-видимому, достигать 30%.

Таким образом, определяемая по уравнению /1/ теплота адсорбции служит прежде всего в качестве сравнительной величины для сопоставления результатов термохроматографических исследований при различных условиях и для планирования эксперимента.

Рис. 2. Зависимость температуры осаждения $T_A({}^{\circ}K)$ ги-потетических веществ с заданными значениями - ΔH_a° от энтропии адсорбции ΔS_a° и экспериментальных параметров.

Авторы благодарны академику Г.Н.Флерову за интерес и внимание к работе.

16

Литература

- 1. И.Звара, Ю.Т.Чубурков, Р.Цалетка и М.Р.Шалаевский. Радиохимия, 11, 163 /1969/.
- 2. J.Merinis, Y.Legoux, G.Boussieres. Radiochem. Radioanal. Letters, 3(4), 255 (1970).
- 3. J.Merinis, G.Bouissieres. Anal. Chem. Acta., 25, 498 /1961/.
- 4. C.Pommier, C.Eon, H.Fould, G.Guiochon. Bull. Soc. Chim. France, No. 4, 1401 / 1969/.
- 5. J.Rudolph, K.Bächman. 8-th Czechoslovak Radiochemical Conference. Marianske Lazne, 1975.
- 6. Я. Де Бур. Динамический характер абсорбции. ИЛ., М., 1962.
- 7. Б.Айхлер, И.Звара. Сообщение ОИЯИ, P12-8943, Дубна, 1975.
- 8. Т.С.Зварова, Ю.Т.Чубурков, И.Звара. Сообщение ОИЯИ, Р6-4130, Дубна, 1968.
- 9. Ю.Т.Чубурков, Г.В.Букланов, И.Звара. Сообщение ОИЯИ, P12-4547, Дубна, 1969.
- 10. J.Merinis, G.Bouissieres. Radiochemica Acta, 12(3), 140 /1969/.
- 11. Б.Айхлер. Сообщение ОИЯИ, Р12-7767, Дубна, 1974.
- 12. Б.Айхлер, В.П.Доманов. Сообщение ОИЯИ, РГ2-7775, Дубна, 1974.
- 13. O.Kubaschewski, E.L.L.Evans. Mettallurgical Thermochemistry, 5. Thermochem. Date Pergamon Press, London, 1967.
- 14. М.Х.Карапетьянц. Основные константы неорганических и органических веществ. Химия, М., 1968.
- 15. A.V.Davidov, J.Radioanal. Chem., 14 (2), 285 (1973).

Рукопись поступила в издательский отдел 14 января 1976 года.