

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

P12-93-129

Ю.В.Норсеев, Л.Вашарош*

ГАЗОХРОМАТОГРАФИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ СОЕДИНЕНИЙ АСТАТА. Пространственные характеристики

•ЦИФИ, Будапешт, Венгрия

1993

В основе процессов, происходящих при использовании газожидкостной хроматографии, лежат физико-химические закономерности. Взаимодействие анализируемого вещества со стандартной фазой определяется их физико-химическими параметрами, что позволяет по положению пика на хроматограмме оценить ряд характеристик летучих соединений элементов. Так, удельный удерживаемый объем анализируемого вещества является абсолютной величиной и носит характер физико-химической константы соединения. Нами были найдены экспериментальные значения удельных удерживаемых объемов галоидных производных бензола, включая астатбензол, на апиезоне-L при различных температурах колонки вблизи температуры кипения изучаемого соединения. Прямое измерение этого параметра позволило определить теплоты испарения и температуры кипения астатароматических соединений [1,2].

Неаналитическое использование газовой хроматографии получило распространение в сравнительных расчетах физико-химических констант веществ, находящихся в истинных ультрамикроколичествах [3—6].

В работе [2] было показано, что существует линейная зависимость газохроматографического индекса удерживания функциональной группы галогенов (δI_x) на неполярной неподвижной фазе^{*} от фактора дисперсионного взаимодействия D_y , определяемого соотношением

$$D_x = \frac{\alpha_x}{\left(r_0 + r_x\right)^3},$$

где α_x — поляризуемость атомов галогенов, r_0 , r_x — ван-дер-ваальсовы радиусы функциональных групп сорбента и сорбата.

Исходя из этой зависимости были найдены поляризуемость атома астата и рефракция связи углерод — астат в ароматических соединениях астата.

Поскольку существует корреляция указанных величин с пространственными характеристиками астата, то, вероятно, должна наблюдаться определенная зависимость пространственных физико-химических характери-

ୁ 2

© Объединенный институт ядерных исследований. Дубна, 1993

стик галогенов от газохроматографического индекса удерживания их функциональной группы.

Целью настоящей работы явилась проверка существования такой зависимости и оценка ряда пространственных характеристик астата.

Для этого мы использовали найденные нами индексы удерживания ароматических соединений галогенов на неполярных жидких фазах [1].

По теории газожидкостной хроматографии каждый структурный элемент вносит свой вклад в энергию межмолекулярного взаимодействия с неподвижной фазой [7]. Для неполярных стационарных жидкостей энергия межмолекулярного взаимодействия исследуемых веществ с неподвижной фазой в основном характеризуется дисперсионными силами притяжения, поэтому, как нам кажется, изменение зарядового распределения в ряду ароматических галогенпроизводных не должно сказаться на выбранных нами зависимостях.

Используя сравнительные методы расчета, мы обнаружили прямолинейную зависимость ряда пространственных характеристик галогенов (их значения взяты из справочной литературы [8—10]) от газохроматического индекса удерживания их функциональной группы $Y = A\delta I_v + B$.

В табл.1 и 2 представлены коэффициенты таких линейных зависимостей, определенных методом наимсныших квадратов, для галогенбензолов и галогентолуолов на таких неподвижных фазах, как сквалан и апиезон-L, при температуре колонки 160°С.

Таблица 1. Коэффициенты линейной зависимости для галогенбензолов (для которых $\delta I_x = I_{C_6H_5} X - I_{C_6H_6})$

				(All Mark Mark 1973) "李傕"的"李
a a constante de la constante d	сквалан		апиезон-L	
	A 10 ⁻⁶	В	A 10 ⁻⁶	B
Ковалентный радиус	1715 (3)	0,661 (1)	1573 (2)	0,676 (1)
Ван-дер-ваальсов радиус	1982 (4)	1,391 (3)	1823 (5)	1,407 (4)
Атомный радиус	1546 (2)	0,716 (2)	1432 (3)	0,715 (2)
Ионный радиус Х	1984 (4)	1,399 (3)	1808 (4)	1,416 (5)
Атомный объем	22410 (50)	16,48 (4)	20410 (60)	16,71 (5)
Межатомное расстояние С—Х (в галогенароматике)	1743 (3)	1,364 (4)	1601 (3)	1,380 (4)

Коэффициенты корреляции полученных зависимостей были не ниже 0,99.

enhalt standing filler in a standing of the sta

Экстраполяционная оценка, выполненная на основе найденных соотношений, дает для астата значения определяемых величин, которые представлены в табл.3.

BOBLESS STREET HACTERYY

^{*}Индекс удерживания функциональной группы галогенов представляет собой разность индекса удерживания галогенпроизводных бензола (*I*_{C6H5X}) и индекса удерживания бензола (*I*_{C6H6}), измеренных при определенной температуре колонки.

таблица 2. Коэффициенты линейной зависимости для галогентолуолов (для которых $\delta I_x = I_{C_6 H_4 C H_3 X} - I_{C_6 H_5 C H_3})$

	an a				
\mathbf{Y} . The second se	сквалан апиезон-L				
	A 10 ⁻⁶	B	A 10 ⁻⁶	B	
 Ковалентный радиус	1728 (3)	0,636 (1)	1582 (3)	0,660 (1)	
Ван-дер-ваальсов радиус	2014 (4)	1,361 (5)	1839 (3)	1,389 (6)	
Атомный радиус	1549 (2)	0,694 (2)	1423 (2)	0,715 (3)	
Ионный радиус Х	2009 (4)	1,370 (4)	1828 (3)	1,398 (5)	
Атомный объем	22580 (60)	16,19 (3)	20620 (50)	16,49 (4)	
Межатомное расстояние С—Х (в галогенароматике)	1772 (3)	1,339 (4)	1612 (3)	1,363 (3)	

Таблица 3

and the second second

en i se de ser

affer a traditional de la casa de	Галогенбензолы		Галогентолуолы		Литература	
ne netto net na chigi sul etto chiga Na si anti anti anti anti anti anti anti	сквалан	апиезон	сквалан	апиезон		
- Ковалентный радиус (Å)	1,52 (1)	1,52 (1)	1,51 (1)	1,52 (1)	1,46 [11]	
Ван-дер-ваальсов радиус (Å)	2,38 (1)	2,39 (2)	2,38 (2)	2,39 (3)	2,32 [1]	
Атомный радиус (Å)	1,49 (1)	1,48 (1)	1,48 (1)	1,48 (1)	1,46 [11]	
Ионный радиус Ат (Å)	2,39 (1)	2,39 (2)	2,39 (2)	2,39 (2)	2,3 [12]	
Атомный объем (см ³ /моль)	27,68 (7)	27,73 (8)	27,66 (8)	27,67 (9)		
Межатомное расстояние С—А (в галогенароматике, λ)	2,23 (1)	2,24 (2)	2,24 (1)	2,24 (1)	2,24 [13]	

Данные, полученные на основании экстраполяционных расчетов, не очень отличаются от величин, указанных в литературе и найденных другими расчетными методами.

Иной подход к оценке физико-химических характеристик астата газохроматографическим методом связан с изучением поведения соединений галогенов на различных по полярности неподвижных жидких фазах [1,5].

Для оценки пространственных характеристик, связанных с ориентационными и индукционными силами взаимодействия сорбата с неподвижной фазой, мы использовали значения индексов удерживания галогенбензолов, определенных на сильнополярной и неполярной фазах.

Известно, что разница в индексах удерживания одного и того же вещества на полярной и неполярной жидких фазах характеризует его химическую природу, связанную с электростатическими силами взаимодействия между молекулами анализируемого вещества и молекулами жилкой фазы.

В работе [5] была обнаружена линейная зависимость молекулярной поляризации галогенбензолов от разности индексов удерживания их (ΔI_{\star}^{Φ}), измеренных на полярных неподвижных фазах и сквалане. Путем экстраполяции были оценены величины молекулярной поляризации и рефракции астатбензола, дипольные моменты некоторых ароматических соединений астата и дипольный момент связи C-At.

Мы обнаружили, что подобная зависимость наблюдается для других пространственных характеристик астата (табл.4). Величина разности индексов удерживания галогенароматики на полиэтиленгликоле-1500 и сквалане найдена на основании данных, полученных в работе [1].

Для данных зависимостей коэффициенты корреляции оказались несколько хуже (~0,93), чем в предыдущих. По этой причине значения величин, экстраполируемых для астата и представленных в табл.5, имеют разброс.

Таблица 4. Коэффициенты прямолинейной зависимости $Y = A \Delta I_{\pm}^{\Phi} + B$ 的影响的复数形式

		x .	
 12	A	1.1 S. 1. S.	12

(아파리) 그는 아파리 (아파리)

Y	Галогенбензолы	<u>Галоген</u>	толуолы
	А В	А	В
Рефракция атома галогена	0,0761 (2) -34,23	(8) 0,0805 (3) (5) 0,0370 (2) (7) 0,0738 (4)	-35,90 (9)
Поляризуемость иона Х ⁻	0,0336 (1) -13,42		-15,03 (6)
Рефракция связи С—Х	0,0710 (3) -29,62		-30,49 (8)
an a	Таблица 5		
n de la constante de la constan En seu de la constante de la co La constante de la constante de	Галогенбензолы	Галогентолуолы	Литература
Рефракция атома астата (см 3 /мол	b) 19,82 (7)	20,21 (8)	19,3 [14]
Поляризуемость иона At ⁻ — α (Å 3)	10,40 (5)	10,77 (6)	8,3 [15]
Рефракция связи C—At (см 3 /моль	.) 20,81 (8)	20,93 (9)	20,1 [5]

Проанализированные в данной работе зависимости лишний раз подтверждают, что существует определенная связь между индексами удерживания соединений астата и его физико-химическими характеристиками. Газовая хроматография находит успешное применение в нетрадиционной для нее области — в определении физико-химических величин [16].

В заключение авторы выражают большую благодарность Л.В.Вашарош и Пей Ен Сун за помощь в определении газохроматографических индексов удерживания ароматических соединений галогенов, а также В.И.Соболеву за техническую помощь в проведении экспериментов.

Литература Манала Сонча

- 1. Вашарош Л., Норсеев Ю.В., Халкин В.А. ОИЯИ, 12-12188, Дубна, 1979.
- 2. Вашарош Л., Норсеев Ю.В., Халкин В.А. ОИЯИ, Р6-80-158, Дубна, 1980.
- 3. Samson G., Aten A.H.W. Jr. Synthesis and Properties of N-Alkylastatides. Radiochim. Acta, 1969, 12, p.55.
- 4. Gesheva M., Kolachkovsky A., Norseev Yu.V. The Determination of Boiling Point of Some Isoalkyl Astatides by Use a Glass Column Gas Chromatograph. J.Chromatogr., 1971, 60, p.414.
- 5. Вашарош Л., Норсеев Ю.В., Халкин В.А. ОИЯИ, Р12-81-511, Дубна, 1981.
- 6. Conder J.R., Young C.L. Physicochemical Measurement by Gas Chromatography. John Wiley and Sons, 1979, p.146.*
- 7. Яншин Я.И. Физико-химические основы хроматографического разделения. М.: Химия, 1979, с.28.
- 8. Осипов О.А., Микин В.И. Справочник по дипольным моментам. М.: Высшая школа, 1971, с.13.
- 9. Волькенштейн М.В. Строение и физические свойства молекул. М.-Л.: Изд. АН СССР, 1955, с.128, 129, 278, 279, 288.
- 10. Landolt-Bornstein, Zahlenwerte und Funktionen. Berlin-Gottingen-Heidelberg, Springer-Verlag, Band II, Teil 6, 1959, s.881.
- 11.Ожигов Е.П. ЖОХ, 1964, 34, с.3519.
- 12. Крестов Г.А. Радиохимия, 1962, 4, с.690.
- 13. Норсеев Ю.В., Нефедов В.Д. В сб.: «Исследования по химии, технологии и применению радиоактивных веществ (межвузовский сборник трудов)». Л.: ЛТИ, 1977, с.3.

alter a constant a service de

- 14. Агафонов И.Л. ЖНХ, 1959, 4, с.1270.
- 15. Перова Т.С., Либов В.С. Спектрохим. внутри-межмол. взаимодействий, 1978, 2, с.126.
- 16. Киселев А.В. и др. Физико-химическое применение газовой хроматографии. М.: Химия, 1973.