

Объединенный институт ядерных исследований дубна

7 704

P12-88-166

Б.Горски, Ли Ден Док

ИССЛЕДОВАНИЕ КОМПЛЕКСООБРАЗОВАНИЯ РЕДКОЗЕМЕЛЬНЫХ И ТРАНСПЛУТОНИЕВЫХ ЭЛЕМЕНТОВ МЕТОДОМ ИОННОГО ОБМЕНА

Направлено в журнал "Isotopenpraxis"

Введение

Комплексоны широко применяются для селективного выделения, для анализа и разделения редкоземельных (РЗЭ) и трансплутониевых (ТПЭ) элементов. Повышенная стабильность хелатных комплексов в первую очередь вызывается положительным изменением энтропии в реакции комплексообразования. Кроме того, стабильность комплексов зависит от атомных параметров ионов металлов, таких, как радиус, энтальпия и энтропия гидратации и ионизационный потенциал. Так, например, в рядах лантанидов стабильность хелатных комплексов растет с порядковым номером элемента с некоторым переломом у Grd /1/.

На основе точных определений констант устойчивости комплексов возможны надежные выводы об атомных параметрах элементов, что особенно важно для мало изученных металлов, таких, как тяжелые актиниды, а также Р*m*. Кроме того, комплексоны широко используются для разделения РЗЭ и ТПЭ, поэтому исследование комплексообразования имеет, наряду с научным, также практическое значение.

Следует отметить, что до сих пор в литературе имеются большие расхождения по величинам констант устойчивссти хелатных комплексов РЗЭ и ТПЭ, а для Рто и тяжелых ТПЭ эти данные почти совсем отсутствуют.

В настоящей работе методом ионного обмена было изучено комплексообразование Рт, Еч, Ть, Тт, Уь, Ат и Сf I, 2-диаминциклогексантетрауксусной (ДДТА) и с диатилентриаминпентауксусной (ДТПА) кислотами.

2. Экспериментальная часть

Определение коэффициентов распределения ионов между катионитом и раствором мы проводили в статических условиях.

Раствор объемом 5 мл встряхивали с навеской смолы вофатит КРS (8% **ДУВ**, 20-60 мкм) массой 5 мг при 20⁰С в течение 60 мин. КРS предварительно переводили в натриевую форму. Для этого после последовательной промывки растворами IM NH₄SCN, 6M HCl , H₂O смолу обрабативали раствором 0,I M NaClO₄ и водой, а затем высущивали на воздухе. В качестве радиоактивных индикаторов применяли ¹⁴⁷ Pm ¹⁵² Eu, ¹⁶⁰ Tb, ¹⁷⁰ Tm, ¹⁶⁸ Уb, ²⁴¹ Am, ²⁴⁹ Cf. Радиохимическую чистоту отметчиков проверяли *у*-спектрометрически, ¹⁴⁷ Pm мерили на *β*-детекторе. Изучение распределения РЗЭ и ППЭ между смолой и раствором проводили при определенном pH раствора, изменяя исходную концентрацию комплексона при ионной силе *м*=0, I (No(10₄). Растворы комплексообразсвателей

OUSCREEVE RECTIFY **BUE JINGTERA**

приготавливали из 1.2-лиаминниклогексантетрауксусной и диэтилентриаминцентауксусной кислот марок ч.д.п. растворением их в NaOH из расчета образования соединений Na₂H₂ДПА и Na₂H₃ДПА. Ионную силу устанавливали с учетом равновесных концентраций всех форм лиганда и рН раствора /2/. После встряхивания и установления равновесия смесь катионита и раствора центрифугировали и в растворе определяли концентрацию металла (по радиоактивности А), а также повторно контролировали рН раствора.

3. Результаты

З.І. Расчет констант устойчивости

Теория и практика исследования комплексообразования методом ионного обмена описаны в литературе довольно подробно /3,4/. Основной параметр ионного обмена - коэффициент распределения ионов металлов с катионитами определяется выражением

$$K_{d} = \frac{C_{\overline{M}}}{C_{M}g_{+}} \cdot \frac{V}{m} \tag{1}$$

Ст - концентрация металла в смоле (ммоль)

Сизт- концентрация металла в растворе (ммоль)

т - вес катионита (г)

В зависимости от лиганда и от заряда иона металла в растворе могут образоваться нейтральные, положительно и отрицательно заряженные комплексы. Для количественного анализа таких систем разработаны несколько математических методов. В случае образования в растворе одного отрицательно заряженного или нейтрального комплекса удобно применять для расчета констант устойчивости метод.предложенный Шубертом ^{/5/}. Трехвалентные лантаниды и актиниды образуют в растворах с ЩПА и ДППА, как хорошо известно, и, как нами раньше было показано /2/, одну отрицательно заряженную комплексную форму. Таким образом можно исходить из следующих соображений: если ион металла находится в микроконцентрациях и раствор имеет постоянную ионную силу, то справедливо уравнение (I) и для коэффициентов распределения иона металла между раствором и катионитом в отсутствие лиганда имеем

$$\begin{pmatrix} = \frac{[M]}{[M]} & \frac{v}{m} \end{pmatrix}, \qquad (2)$$

а в присутствии лиганда

$$G_{d} = \frac{[\overline{M}]}{[M] + [ML_{n}]} \cdot \frac{\nu}{m} \quad (3)$$

Преобразование этих уравнений приводит к

$$\frac{[ML_n]}{[M]} = \frac{K_{do}}{K_d} - 1.$$
⁽⁴⁾

Подставим (4) в выражение для константы устойчивости комплекса (β_n), получаем

$$\beta_n = \frac{[ML_n]}{[M][L]^n} = \frac{K_{dg}/K_d - 1}{[L]^n}$$
(5)

[M] - концентрация ионов металла в смоле

[М] - концентрация ионов металла в растворе

[*ML*₀] - концентрация комплекса в растворе [*L*] - равновесная концентрация лиганда

И, определяется экспериментально в зависимости от концентрации лиганда, K_{do} также можно определить экспериментально или экстраполя-цией функции $\frac{1}{\kappa_d} = f(LL)$ к [L] = 0, n – наклон прямой, [L] рас-считывают из данной общей концентрации комплексообразователя, его констант диссоциации и рН раствора.

3.2. Выбор условий проведения опытов

Іля правильного выбора условий опытов предварительно исследовали кинетику и изотерму сорбции. На примере Ть³⁺ определяли время достижения равновесия в реакции со смолой при pH=2,5 и M=0,I $(Nallo_{4})$. Равновесие практически достигается за t = 20 минут встряхивания.

Хотя условия расчета констант устойчивости требуют проведения опытов при концентрации металла, См«С, (С, - общая концентрация лиганда), необходимо все же определить изотерму сорбщии металла. особенно из-за того, что в опытах применяли довольно маленькие количества смолы. Из рис. І видно, что в условиях опыта коэффициенты распределения ос-Таются постоянными по концентрации металла, равной IO-4 моль/л.

3.3. Определение констант устойчивости Еи, Тт, Ат с ДТПА

Изучалось распределение индикаторных количеств Еи, Тт, Ат с катионитом из растворов с pH ≈ 2 в области концентрации ДТПА от I·10⁻⁴ до I·10⁻³ моль/л. Коэффициенты распределения сильно зависят от равновесной концентрации лиганда $[L^{5-}]$. На рис. 2 показана зависимость обратной величины коэффициента распределения $\frac{4}{K_d}$ от $[L^{5-}]$. Как видно, эта зависимость хорошо аппроксимируется прямой, экстраполяция которой к $[L^{5-}] =0$ дает значение для $\frac{4}{K_d}$ = 0,416 10⁻⁴. Прямая проводилась методом наименьших квадратов. Далее, используя уравнение (5), рассчитывали константу устойчивости β , ее величина с учетом ошибки определения $[L^{5-}]$ и К_d равняется $lg\beta_{Eu} = 22,65\pm0,04$. Расчет всех значений проводили на ЭВМ ЕС-1060 с использованием программы FUMILI. На рис. 3 показаны соответствующие зависимости $lg(\frac{K_d}{K_d} - 1) = f(lg[L^{5-}])$ для комплексов Тт, Еи, Ат Наклон кривых, который для всех элементов равен I, подчеркивает образование при данных условиях одного комплекса вида $[Mel]^{2-}$. В таблице I приведены величины констант устойчивости. Как видно, наблюдается удовлетворительное совпадение между данными, полученными различными методами.

Значение	констант	устойчивости	для	комплексов	
. Too /	Am C TTT				

Таблица І

Ион	Метод	Темпера- тура (⁰ С)	М (г–экв/л)	lg B	Литература
Eu ³⁺	потенциометрия	25	0,I(K W O ₃)	22,39	/6/
	потенциометрия	25	0,I(KWO ₃)	22,9I	/7/
	ионный обмен	20	0,I(NaUO ₄)	22,65±0,04	наши данные
T m³⁺	потенциометрия	25	0,I(KNO ₃)	22,72	/6/
	потенциометрия	25	0,I(KNO ₃)	22,97	/7/
	ионный обмен	20	0,I(NaCO ₄)	23,04 <u>+</u> 0,04	наши данные
Δ m³⁺	ионный обмен	25	0,I(NH ₄ UO ₄)	22,92	/IO/
	электромиграция	1 25	0,I	22,74	/9/
	ионный обмен	20	0,I(Na(10 ₄)	22,62±0,04	наши данные

3.4. Определение констант устойчивости Р_m, Тb, Tm, уb, Am и Cf с ЩПА

Аналогично изучению комплексов с ДТПА исследовалось распределение Pm^{3+} , Tb^{3+} , Tm^{3+} , Yb^{3+} , Am^{3+} и Cf^{3+} с катионитом в системе с I,2-диаминциклогексантетраацетатом при pH $\approx 2,5$. Зависимости экспериментальных данных $lg(\frac{hde}{kd} - 1)$ от $lg[L^{4-}]$ приведены на рис. 4. Сплошные линии являются расчетными средними значениями. Соответствующие константы устойчивости, а также данные, полученные другими методами, сопоставлены в табл. 2; как видно, имеется хорошее согласие между данными различных методов определения. В заключение приводится зависимость констант устойчивости РЗЭ о ДЦТА, с этилендиаминтетраацетатом (ЭДТА) и нитрилотриацетатом (НТА) от ионных радиусов / I3, I4/ (рис. 5).

При этом использовались средние значения констант устойчивости P33 ^{/8,9,12/}, а для прометия наши данные,установленные ионообменным и электромиграционным методами (табл.3). Из полученных результатов можно оценить ионный радиус Pm³⁺ равный 0,982 ≥ r ≥ 0,972 (A⁰). В литературе приведены значения для r (Pm³⁺) в пределах 0,968 A

В литературе приведени значения для *г* (Pm³⁺) в пределах (),968 А до 0,979 Å /I3-I5/. При этом эти величины получены экстраноляцией средних значений радкусов РЗЭ. Полученная здесь величина радиуса Pm³⁺ как видно, хорошо согласуется с этими данными, что свидетельствует о применимости использованного нами метода.

Рис. 4. Зависимость $lg(\frac{K_{do}}{K_d}-1)$ от $lg[L^4-]$ в системах Рт, Ть, Тт, Уь, Ат, Сf с ДІТА

Рис. 5. Зависимости констант устойчивости комплексов РЗЭ с ДЦТА (3), ЭДТА (2) и НТА (I) от ионных радиусов

		Таблица	2
Значения констант устойчивости ;	цля	KOMILIEKCOB	
Pm, Tb, Tm, Yb, Am, Cf c MITA			

Ион	Метод	Темпе- ратура (^о С)	и (г-экв./л)	lg B	Литература
Pm ³⁺	электромиграция	20	0,I(Na(104)	I7,80	/2/
	ионный обмен	20	0,I(Naci0 ₄)	I7,80±0,08	наши данныө
т ь³⁺	полярография	20	0,I(KN0 ₃)	I9,50	/8/
	потенциометрия	25	0,I(KN0 ₃)	19,30	/9/
	ионный обмен	20	0,I(Načľo ₄)	I9,65±0,04	наши данные
Tm ³⁺	полярография	20	0,I(KM03)	20,96	/8/
	потенциометрия	25	0,I(KN0 ₃)	20,46	/9/
	ионный обмен	20	0,I(Na(ĭ0 ₄)	20,69±0,04	наши данные
Ub ³⁺	полярография	20	0,I(KN0 ₃)	21,12	/8/
J	потенциометрия	25	0,I(KN0 ₃)	20,80	/9/
	ионный обмен	20	0,I(Na(ĭ0 ₄)	20,8I±0,04	наши данные
Am ³⁺	электромиграция	25	$0, I(KNO_3)$	I8,49	/10/ '
	¹¹	20	0,I(Na Ŭ0 ₄)	I8 , 30	/2/
	иснный обмен	25	0,I(N H ₄ (/0 ₄)	I8,79	/II/
		20	$0, I(Nai)_4$	18,70±0,04	наши данные
cf ³⁺	электромиграция	20	0,I(Na (104)	19,60	/2/
•	ионный обмен	25	0,I(N H ₄ (10,)	I9 ,4 2	/11/
	-"-	20	0,I(Na <i>Ĉl</i> 0 ₄)	19 ,56±0,04	наши данные

Таблица З Константы устойчивости Рт³⁺ с ДЦТА, ЭДТА и НТА

Лиганд	<i>м</i> (г-экв./л)	lg P1	Метод	
ДЦТА	0,035	18,9 ± 0,2	электромитрация	
	0,I	17,8 ± 0,1	ионный обмен	
ЭДТА	0,005	18,6 ± 0,2	электромитрация	
	0,I	16,4 ± 0,1	ионный обмен	
	0,1	II,I ± 0,I	ионный обмен	

7

Авторы выражают благсдарность члену-корреспонденту ЧСАН И. Зваре за постоянную поддержку работы, а также Чве Сон Хеку за помощь при составлении математической программы.

Литература

- I. В.Г.Вохмин, Г.В.Ионсва. Журнал неорг.хим. 32, II (1987) 2667.
- 2. Б.Горски, Зен Зин Пхар. Препринт ОИЯИ РІ2-87-146, Дубна, 1987.
- Г.Л.Шлэфер "Комплексообразование в растворах" Изд. Химия, Москва, 1964.
- 4. F.J.C.Rossotti, H.S.Rossotti, "The Determination of Stability Constants", New York, 1961.
- 5. J.Schubert, J.Phys.Coll.Chem. 5, 413 (1954).
- 6. T.Moeller, L.C.Thompson, J.Inorg.Nucl.Chem. 24, 499 (1962).
- 7. R.Harder, J.Inorg.Nucl.Chem. 11, 197 (1959).
- G.Schwarzenbach, R.Gut and G.Anderegg, Helv.Chim.Acta, 37, 937 (1954).
- 9. T.Moeller and T.M.Hseu, J.Inorg.Nucl.Chem., 24 1635 (1962).
- А.В.Степанов, Е.К.Корчемная, "Электромиграционный метод в несрганическом анализе", Москва, Изд. Химия, 1979.
- II. R.D.Baybarz, J.Inorg.Nucl.Chem., 28, 1035,1056(1966) 27,1831(1965)
- I2. L.G.Sillen, A.E.Martell, "Stability Constants of Metal-Ion-Complexes", London.
- I3. S.Goldman, L.R.Morss, Can.J.Chem., 53, 18 (1975) 2695.
- I4. F.David, J.Less-Common Metals, 121 (1986) 27.
- I5. R.Lundquist, E.K.Hulet, P.A.Baisden, Acta Chem. Scand. A35 (1981) 653-661.

Рукопись поступила в издательский отдел II марта 1988 года.

Горски Б.,Ли Ден Док Р12-88-166 Исследование комплексообразования редкоземельных и трансплутониевых элементов методом ионного обмена

Исследовалось комплексообразование ионов Pm, Eu, Tb, Tm, Yb, Am, Cf с хелатообразующими комплексообразователями 1,2-диаминциклогексантетрауксусной и диэтилентриаминпентауксусной кислотами. Определены константы устойчивости этих комплексов. Из полученных данных для Pm³⁺ оценен ионный радиус.

Работа выполнена в Лаборатории ядерных реакций ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1988

Перевод авторов

Gorski B., Li Den Doc P12-88-166 Investigation of Complex Formation of Rare-Earth and Transplutonium Elements by Ion Exchange

The complex formation of Pm, Eu, Tb, Tm, Yb, Am and Cf in solutions of chelating agents - 1,2-Diaminocyclohexanetetraacetic acid and Diethylenetriaminopentaacetic acid - has been investigated. The stability constants of the complexes have been determined. From the results obtained the Pm^{3+} ionic radius has been estimated.

The investigation has been performed at the Laboratory of Nuclear Reactions, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1988