

сообщения объединенного института ядерных исследований дубна

19/x-81

P12-81-511

Л.Вашарош, Ю.В.Норсеев, В.А.Халкин

ГАЗОХРОМАТОГРАФИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ АСТАТАРОМАТИЧЕСКИХ СОЕДИНЕНИЙ

3. Молекулярная рефракция и дипольный момент

Электрическая поляризуемость, выраженная молекулярной рефракцией, и дипольный момент молекул являются весьма важными молекулярными постоянными. Молекулярная рефракция характеризует смещаемость электронной оболочки молекул под действием переменного электрического поля. а дипольный момент - распределение зарядов в молекуле.

Как и в случае других физико-химических величин органических соединений астата/1/, классические экспериментальные методы определения молекулярной рефракции и дипольного момента неприемлемы ввиду предельно низкой концентрации астата. Так как поляризуемость молекул и дипольный момент определяют силы взаимодействия между молекулами /2/, газожидкостную хроматографию можно использовать и в этом случае для определения молекулярной рефракции и дипольного момента органических соединений астата. Задача заключается в выяснении закономерностей изменения параметров удерживания в ряду галогенпроизводных в зависимости от значения величин, содержащих их рефракцию и дипольный момент. Искомые свойства органических соединений астата можно найти по данным удерживания этих соединений экстраполяционным методом.

Целью настоящей работы было определение рефракции и дипольного момента связи C-At в различных ароматических соединениях по индексам удерживания на различных по полярности неподвижных фазах. Газохроматографические индексы удерживания ароматических соединений галогенов, включая астат, были определены нами в работах ³⁻⁻⁵.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЯ

Рефракция связи C - At . Молекулярная рефракция вещества (R) определяется известным соотношением /см., напр. /2/ /:

$$R = \frac{n^2 - 1}{n^2 + 2} \frac{M}{d} = \frac{4\pi}{3} N_A a_{\dot{e}} , \qquad (1)$$

где n - показатель преломления, М - молекулярный вес, d - плотность вещества, N_A- число Авогадро и $\alpha_{\rm b}$ - электронная поляризуемость. Экспериментальное определение R сводится к измерению показателя преломления при данной длине волн и плотности макроколичеств веществ при одной и той же температуре. Установлено также, что молекулярные рефракции в больщинстве слу-

Овъединенный инстить © 1981 Объединенный институт здерных исследорений Дубна

БИБЛИОТЕКА

1

Таблица 1

Рефракция связей углерод-галоген (R_{C·X}) при длине волны света желтой линии Na^{.77}

 X	R _{с-х} , см ³
 F	1,44
Cl	6,51
Br	9,39
I	14,61

чаев могут быть представлены аддитивно, как суммы рефракций составных частей молекулы. В справочной литературе /см., напр.^{76.7} / в настоящее время приводятся не только атомные рефракции, но и более надежные величины - рефракции связей для различных длин волн в области видимого света. Рефракции связей углерод - галоген при длине волны света желтой линии Na(R_D)⁷⁷⁷, использованные нами для определения рефракции связи С-Аt, представлены в табл. 1.

При определении рефракции связи C-At исходили из линейной зависимости $\delta I_X / \delta I_X$ - газохроматографические индексы удерживания галогенов, измеренные на неполярных неподвижных фазах/ от D_X / D_X - фактор дисперсионного взаимодействия функциональных групп сорбата и сорбента/, обнаруженной нами в работе 5. D_X при этом определяется соотношением:

$$D_{X} = \frac{a_{X}}{(r_{0} + r_{y})^{3}}, \qquad /2/$$

где α_x - поляризуемость атомов галогенов, $r_0 - и r_x$ - вандерваальсовы радиусы функциональных групп сорбента и сорбата соответственно.

Поскольку поляризуемость атомов есть функция рефракции связи, то при замене α_x на рефракцию связи углерод-галоген ($R_{C,X}$) в уравнении /2/, зависимость δI_x от D_x^R в ряду галогенов также окажется прямолинейной /<u>рис. 1/</u>. По экспериментальной величине δI_{At} можно найти D_{At}^R , а следовательно, и рефракцию связи C-At. В табл. 2 приведены величины R_D для связи углерод - астат, определенные на полярных неподвижных фазах сквалан и апиезон - L, в различных ароматических соединениях астата. Зная величину рефракции связи C-At из табличных значений рефракций других связей, аддитивным методом можно рассчитывать молекулярную рефракцию любых органических соединений астата.

Рис.1. Зависимость индексов галоидных заместителей ($\delta I \stackrel{\Phi}{X}$) от фактора дисперсионного взаимодействия (D_X^R), $T_c = 160^\circ C$. 1 – апиезон L, 2 – сквалан.

<u>Дипольный момент.</u> Наиболее распространенный экспериментальный метод определения дипольных моментов молекул заключается в измерении температурной зависимости молекулярной поляризации /см., напр. ^{/2,5/}/. Для полярных веществ молекуляр-

ная поляризация (P) определяется следующим известным соотношением /см. напр. $^{\prime 2\prime}$ /:

$$P = \frac{\epsilon - 1}{\epsilon + 2} \frac{M}{d} = \frac{4\pi}{3} N_{A} (a + \frac{\mu^{2}}{3kT}), \qquad (3/$$

где є - диэлектрическая проницаемость, µ - дипольный момент, α - поляризуемость молекулы, k - постоянная Больцмана и T - абсолютная температура.

Для нахождения дипольного момента ароматических соединений астата необходимо было найти корреляцию между Р и газохроматографическими параметрами удерживания в ряду галогенароматических соединений. Мы нашли, что молекулярная поляризация хлор-, бром - и иодбензола ^{/8/} линейно зависит от $p_{\rm x}$ / $p_{\rm x}$ -полярность галогенбензолов по отношению к бензолу, определен- ная нами в работе ^{/5/} /, а также от разности индексов удерживания галогенбензолов ($\Delta I_{\rm ArX}$), измеренных на полярных неподвижных фазах и сквалане /см. <u>рис. 2</u> и <u>3</u>/. По величине $p_{\rm At}$ и $I_{\rm ArAt}$, определенной при различных температурах газохроматографической колонки, нашли молекулярную поляризацию C₆H₅At, а по тангенсу угла наклона прямой зависимости P от 1/T рассчитали дипольный момент астатбензола.

В случае мета-, пара-астаттолуола и мета-астатфторбензола молекулярную поляризацию соответствующих галогентолуолов и галогенфторбензола рассчитали для различных температур по формуле /3/. При расчетах использовали дипольный момент и молекулярную рефракцию этих соединений, взятых из справочной литературы ^{76/}. При этом в формуле /3/ пренебрегали атомной поляризацией молекул ($\mathbf{R} = \frac{4\pi}{3} \mathbf{N}_{\mathbf{A}} \alpha$), так как она является лишь незначительной долей общей поляризации молекул /см., напр. ^{/2,6/}/. Дальнейший расчет дипольных моментов вели таким же образом, как и в случае с астатбензолом.

2

Таблица 2

Рефракции связи углерод-астат (R $_{C-A}$) в ароматических соединениях, определенные на неполярных неподвижных фазах.

Соединения		R _{C-At} , CM ³			
		сквалан	апиезон L		
C6H5At		19, 9	20,0		
	орто -	20,0	20,3		
CH ₃ C ₆ H ₄ At	мета -	I9 , 9 .	19,9		
	пара -	19,9	19,9		
	орто -	20,4	20 , I		
FC6H4At	мета -	20,3	20,2		
	пара -	20,4	20 ,2		
	орто -	-	20,2		
ClC ₆ H ₄ At	мета -	-	20 , I		
	пара -	-	20,3		
Средняя вели ^R C-At'	ичина См ^е	20,1 + 0,1			

Результаты по определению дипольных моментов ароматических соединений астата приведены в табл. 3, где для сравнения показаны и дипольные моменты аналогичных ароматических иодпроизводных. Из данных табл. 3 видно, что дипольный момент ароматических соединений астата практически не отличается от диполь-

ных моментов соответствующих хлор-, бром- и иодпроизводных.

<u>Рис.2.</u> Соотношение между фактором полярности функциональных групп галогенов (p_x) и молекулярной поляризацией (P) соединений / $T_c = 160^{\circ}$ C/, 1 - C_6 H₅X (X=F, Cl, Br,I), 2 - пара- CH₃C₆H₄X.

Таблица З

Дипольные моменты (μ) ароматических соединений астата, определенные по полярности галогенов ($\mathbf{p}_{\mathbf{x}}$) и разностям индексов удерживания ($\Delta \mathbf{I}_{\mathbf{Arx}}$)

		дипольный момент /µ, D/			
Соединения		p _x =f/P/	ΔI _{ArX} =f/P/		COOTB.
			Препал	пэг	соед. иода [6]
C6H5At		I,54	I,40	I,66	1,70
CH3C6H4At	мета-	I,93	1,93	1,93	1,91
	пара-	2,10	∠, 09	2,05	2,07
FC6H4At	мета-	I , ن7	I , 65	I,58	1,64

Усредненная величина дипольного момента связи C-At, определенная из дипольных моментов астатароматических соединений /табл. 3/ методом векторного сложения, оказалась равной μ_{C-At} =

=1,66+0,4 D. По величине ^µC-At можно рассчитать дипольный момент других астаторганических соединений.

<u>Рис.3.</u> Зависимость разности индексов удерживания соединений ArX($\Delta I \stackrel{\Phi}{X}$) от их молекулярной поляризации / T_c = =160° C /. 1 - C₆H₅X(X = F, Cl, Br, I), 2 - пара-CH₃C₆H₄X. ЛИТЕРАТУРА

- 1. Вашарош Л., Норсеев Ю.В., Халкин В.А. ОИЯИ, Р6-80-158, Дубна, 1980.
- 2. Волькенштейн М.В. Строение и физические свойства молекул, Изд. АН СССР, М.-Л., 1955, с, 249, 275.
- 3. Vasaros L. et al. Magy.Kem.Foly., 1974, 80, p. 487.
- Vasaros L. et al. Radiochem. Radioanal. Letters, 1976, 27, p. 329.
- 5. Вашарош Л., Норсеев Ю.В., Халкин В.А. ОИЯИ, 12-12188, Дубна, 1979.
- 6. Осипов О.А. и др. Справочник по дипольным моментам. "Высшая школа", М., 1971, с. 13.
- 7. Vogel A.I. et al. J.Chem.Soc., London, 1952, p. 514.
- 8. Landolt-Börnstein, II. Band, 6. Teil, Berlin-Göttingen-Heidelberg, Springer-Verlag, 1959, p. 881.

Рукопись поступила в издательский отдел 24 июля 1981 года.