ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

P12 - 7442

11/17-74

622/2-74 А.Колачковски, Ю.В.Норсеев, В.Д.Нефедов

.........

K-60

11 11 11

ПОИСКИ ЗАКОНОМЕРНОСТЕЙ В ИЗМЕНЕНИИ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ ЭЛЕМЕНТОВ-ГОМОЛОГОВ И ИХ СОЕДИНЕНИЙ.

Ш.ПОТЕНЦИАЛЫ ИОНИЗАЦИИ СОЕДИНЕНИЙ ГАЛОГЕНОВ

ЛАБОРАТОРИЯ ЯДЕРНЫХ ПРОБЛЕМ

Направлено в "Журнал физической химии"

ЭЛЕМЕНТОВ-ГОМОЛОГОВ И ИХ СОЕДИНЕНИЙ. III.ПОТЕНЦИАЛЫ ИОНИЗАЦИИ СОЕДИНЕНИЙ ГАЛОГЕНОВ

В ИЗМЕНЕНИИ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ

А.Колачковски, Ю.В.Норсеев, В.Д.Нефедов

поиски закономерностей

P12 - 7442

Колачковски А., Норсеев Ю.В., Нефедов В.Д. P12 - 7442 Поиски закономерностей в изучении физико-химических свойств элементов-гомологов и их соединений, III Потенциалы ионизации соединений галогенов Обнаружена линейная зависимость потенциалов ионизации некоторых органических и неорганических соединений галогенов от их универсальных параметров. Найдено общее уравнение, отражающее эту закономерность. Препринт Объединенного института ядерных исследований. Дубна, 1973 Kolachkovsky A., Norseev Yu.V., P12 - 7442 Nefedov V.D. Search for the Regularities in the Change of Physical-Chemical Properties of the Elements-Homologs and Their Compounds. III. Ionization Potentials of Halogen Compounds Linear dependence of the ionization potentials of some organic and inorganic halogen compounds on their universal parameters is observed. A general equation, reflecting this regularity, is found.

Preprint. Joint Institute for Nuclear Research. Dubna, 1973

🔘 1973 Объединенный институт ядерных исследований Дубна

Потенциал ионизации представляет одну из важнейших характеристик свойств атома. Оценка этой величины для последних членов группы элементов периодической системы /астат, франций/, полученных в ультрамикроколичествах, представляет большие затруднения. Обычно расчеты потенциалов ионизации этих элементов строятся на основе метода сравнения. Так, используя зависимость потенциала ионизации от изменения степени экранирования заряда в группах элементов периодической системы, Финкльнбург и Штерн /1/ произвели оценки потенциалов ионизации технеция, полония, астата, франция и ряда других элементов. На основе зависимости, найденной в работе /2/, связывающей потенциалы ионизации двухатомных молекул элементов основных групп с частотой колебания

$\lg \omega_{\rho} = g - m \lg n^2 I,$	n an tha		/1/
где g, m - постоянные,	характерные	для	каждой

группы элементов периодической системы, Кайзер^{/3/} определил потенциал двухатомной молекулы астата I (At₂). Эта оценка была проведена с использованием значения частоты колебания молекулы At₂, которое, в свою очередь, вычислено с довольно большой погрешностью.

Следует отметить, что проверка этого уравнения с использованием данных, указанных в новой справочной литературе ^{/4/}, показала значительное отклонение от зависимости /1/ для предпоследнего представителя группы галогенов - иода.

3

В своих предыдущих работах ^{/5,6/} мы показали, что так называемые универсальные параметры элементов /УПЭ/ галогенов довольно хорошо отражают изменение некоторых физико-химических свойств галогенов и их соединений:

$$Y_{(RX_{i})} = \bar{a}_{Y,R} + \beta_{Y,R} \sum_{i} Z'_{(X_{i})} + \eta_{(F)},$$

$$\eta_{(F)} = \frac{K_{Y}}{n_{X'}} \sum_{i} Z'_{(X'_{i})} + f.$$
 /2/

Здесь $Y_{(R,X_i)}$ - нормальная температура кипения, энтальпия испарения или энтальпия плавления вещества RX_i ; $X_i = F$, Cl, Br, J; $X'_i = Cl$, Br, J; $Z'_{(X_i)} - Y'$ ЭП галогенов, $Z'_{(F)}=9$, $Z'_{(CI)}=17$, $Z'_{(B_i)}=21,1$, $Z'_{(J)}=26,5$; $\overline{a}_{Y,R}$ н $\overline{\beta}_{Y,R}$ постоянные коэффициенты, связанные со свойством Y и радикалом R; $\eta_{(F)}$ - поправочный коэффициент, учитывающий отклонения от общего характера зависимости физико-химической величины при появлении атома фтора в молекуле; n_{X_i} - число атомов других; кроме фтора, галогенов в молекуле; f - постоянная, связанная с типом соединения; K_Y - постоянная для данного свойства.

В настоящей работе мы провели исследование закономерностей изменения потенциала ионизации соединений галогенов от их УПЭ (Z') и установили, что уравнение /2/ может быть с успехом распространено и на эту физикохимическую характеристику.

На рис. 1 показаны зависимости 1-го и 2-го потенциалов ионизации галогенов в элементарном состоянии, их сродства к электрону и потенциалов ионизации двухатомных молекул галогенов от их Z'. Прямолинейный характер зависимости потенциалов нонизации от суммы Z' сохраняется и для большинства органических и неорганических соединений галогенов /рис. 2/: Для моногалогенов эти графические соотношения описываются уравнением

$$1_{(X)} = \alpha_1 + \beta_1 Z'_{(X)},$$
 /3/

представляющим упрощенный вариант уравнения /2/.

Потенциалы ионизации двухатомных молекул галогенидов, полигалогензамещенных метана, а также тригалогенидов бора определяются уравнением, аналогичным уравнению /2/:

$$I_{(RX_{i})}^{a} = a_{I,R}^{A} + \beta_{I,R} \sum_{i}^{\Sigma} Z'_{(X_{i})}^{A} + \eta_{(F)},$$

$$\eta_{(F)}^{A} = -\frac{0.085}{n_{X_{i}}} \sum_{i}^{\Sigma} Z'_{(X_{i})}^{A} + f.$$
(4/

Коэффициенты a и β уравнений /3/ и /4/ вычислены способом наименьших квадратов для неравноточных измерений и вместе с их среднеквадратичными ошибками представлены в табл. 1. В случае полигалогензамещенных метана коэффициенты уравнения /4/ имеют следующие значения:

$$a_{(CH_n X_{4-n})} = 15,735 - 1,310 n,$$

 $\beta_{(CH_n X_{4-n})} = -0,0623, \quad n = 0,1,2.$
(5/

Величина f определяется типом соединения, содержашего фтор:

$$f_{(XF)} = 1,646; \qquad f_{(CX_3F)} = 1,220; \\f_{(BXF_2)} = 1,448; \qquad f_{(CX_2F_2)} = 0,879; \\f_{(CXF_3)} = 1,2; \\f_{(BX_2F_2)} = 1,011; \qquad f_{(CHXF_2)} = 1,700.$$

Сравнение величин потенциалов ионизации, вычисленных по уравнениям /3/ и /4/, с приводимыми в справочной литературе /табл. 2, 3 и 4/ показывает хорошую сходимость между этими величинами для ряда органических и неорганических соединений галогенидов.

Из рассмотренных закономерностей изменения физико-химических свойств соединений галогенов^{/5,6/} можно заключить, что принятые нами универсальные параметры элементов в какой-то мере отражают не только взаимодействие изучаемых молекул с их окружением и внешней средой /энергетические эффекты фазовых переходов, нормальная температура кипения/, но и природу сил взаимодействия внутри молекулы /потенциалы ионизации/.

Найденную закономерность, вероятно, можно будет распространять и на представителя 6-го периода - астат.

Литература

- 1. W.FinkeInburg, F.Stern. Phys.Rev., 77, No. 2, 303 (1950).
- 2. Y.P. Varshni. Zeitsch. für Phys., 135, 512 (1953).
- 3. R.W.Keiser. J.Chem.Phys., 33, No. 4, 1265 (1960).
- 4. Термические константы веществ. Справочник под редакцией В.П.Глушко. АН СССР, ВИНИТИ, Москва, вып. 1 /1962/; вып. II /1966/; вып. III /1968/; вып. VI, /1970/; вып. V /1971/.
- 5. А.Колачковски, Ю.В.Норсеев, В.Д.Нефедов. Препринт. ОИЯИ, P12-7440, Дубна, 1973.
- 6. А.Колачковски, Ю.В.Норсеев, В.Д.Нефедов. Препринт ОИЯИ, P12-7441, Дубна, 1973.

Рукопись поступила в издательский отдел 3 сентября 1973 года.

Рис. 1. Зависимость 1-го и 2-го потенциалов ионизации атомов, двухатомных молекул и сродства к электрону галогенов от их универсальных параметров. А - первый потенциал ионизации. Б - второй потенциал ионизации. В - сродство к электрону. Г - первый потенциал ионизации двухатомных молекул.

8

40 EQ E0	BHd ₃				Toeri Toeri	A182 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		10 10 10 10 10 10 10 10 10	161 981	•	C	a	C Hal	11	1198		37 0 0 41 0.55	1 941 / 100		
1 07 1	^{4d1} 2 D 117.8						100		m			A		15° CH Hala		174 16 5 418 e25	541 ST1		CH3Hals 27	
20	16 - 110 - 1		- 71		ی ۲ [98]		ч	PUN P	ЕИНС	, ри́и			- 1		Hall Hall	- 21	100	L Hal		-
a/.	TRT #7F	182.8BrclF	183.062F	I84. <i>BJULF</i>	185. BJBrF	I86. 872 F	187. BCC,	188. BBC.	189. BBrz C	190. BJCc2	~ 191. <i>B Br</i> ₃	192. 878-00	193. BJBrz	194. 37 cc	195. BJ, Br	196. <i>B</i> 7 ₃		· · ·		
ных парамс янения фтор	י דעט א <u>י</u>	164. CF	165. B.F	166. JF	168. Bru	169. Br ₂	170. Ju	171. J.Br	I72. J ₁	173. HF	I74. HCC	I75. HBr	I76. HJ	177. BF,	178. BUEF	179. 8BrF2	180. BU2F			
универсалы ачены соел	1 90 10	38. CC. F.	39.CJF	41. Ca3r	42. CBr F.	49. CBr3F	55. C &	70. C2 HSF	71. C2 H5 CE	72. C2 H5 Br	73. C2H5J	1	-							
CYMMEI EX		1. 661	2. cmgc	4. CK. J	9. CH1CL2	10. CH2 8-CC	II. CH, Br,	I5. CHF.	I6. CHCLF	I7. CHBrFz	18. CHULF	25. CHCC	27. CHBr. CC	29. CHBr.	35. CF	36. Caf.	•			*

CUMMA YHNBEPCANDHBX TAPAMETPOB JAFWEHTOB TANOFEHOB ZIMI

- 12 14

Коэффициенты уравнений З и 4

	Коэффициенты и их среднеквадратичные ошибки							
κλ ι	7.IR	Sz	(BIR	Sĵ				
$X \rightarrow X' + e$	17,272	0,41	-0,257402	0,040498				
$X^{+} \rightarrow X^{2+} + e$	32,227	0,029	-0,495384	0,0001228				
X ⁻ →X+e	4,590	0,033	-0,057774	0,001526				
$X_2 \rightarrow X_2^{\dagger} + e$	15,429	0,122	-0,116289	0,003233				
НХ →НХ+е	17,046	0,314	-0,254530	0,015627				
CH ₃ X	14,464	0,031	-0, 185965	0,001177				
C_2H_5X	13,628	0, 159	-0,159883	0,007913				
BX3	15,603	0,285	-0,078412	0,005359				

Таблица 2

Таблица І

Сравнение величин потенциалов ионизации галогенов и их сродства к электрону, рассчитанных по уравнению 3,с величинами, приводимыми в справочной литературе

		Потенциал ионизации ${\mathcal J}$ (эв)							
	X	Литерат данны	урные 1е /4/	Рассчитаны по уравне- нир З					
	\mathcal{I}	ΔĴ	J'	J'-J					
	x → X + e								
	ce	13,02	0,30	12,90	-0,12				
	Br	II,84	0,02	II,84	0,00				
	J	10,451	0,001	10,451	0,000				
	$X^{+} \rightarrow X^{2+} + e$		•						
	ce	23,804	0,011	23,806	0,002				
	Br	21,80	0,03	21,78	-0,02				
•	J	19,099	0,008	19,100	0,001				
	$\begin{array}{c} X^{-} \rightarrow X + e \\ ce \\ Br \\ J \end{array}$	3,613 3,363 3,063		3,608 3,371 3,059	-0,005 0,008 -0,004				

8

9

Таблица 4

11

Таблица 3

Сравнение величин потенциалов ионизации соединений галогенов, рассчитанных по уравнению 3, с литературними данними

2	Потенциалы ишнизации Ј («х) /эв/								
RX	Литератур	ные данные/4/	Рассчитаны по уравнению						
	J	<u>л Л</u>	J'	J'-J					
HCC	12,74	0,01	12,72	-0,02					
HBr	11,62	0,01	II,68	0,06					
НĴ	10,38	0,02	10,30	-0,08					
CH3F	12,80	0,03	12,79	-0,01					
CHJCL	11,25	0,05	11,30	0,05					
CH3Br	10,541	0,002	10,540	-0,001					
CH ₃ J	9,536	0,003	9,536	0,000					
C,H _s F	12	I Constant	12,19	0,19					
CIHSCE	10,89	0,01	10,91	0,02					
C2H5Br	10,29	0,01	10,26	-0,03					
C2H5J	9,33	0,02	9,39	0,06					

Сравнение величин потенциалов монизации неорганических полигалогенсоединений и галогензамещенных метана (кроме CH₃X), рассчитанных по уравнению 4, с величинами, приводимыми в справочной литературе

Соеди-	Потени ничеси не	циал и Ких по Ний 7/Э	онизации лигалоге: в/	неорга- нсоеди	Соеди-	Потенциал конизации гало- гензамещенных метана J/эв)				
HCHWC	Литера данны	атурн.	Рассчита уравнен	ны по но 4	HOMAV	Литерат данные/	урн. 4/	Рассчитаны по уравнению 4		
an jîranîn Roja	J	۵J	\mathcal{J}'	J' - J		\mathcal{J}^+	ъĴ	J'	J-J	
CLF	12,7	0,2	12,61	-0,09	CH2CL2	II,35	0,02	11,00	-0,35	
BrF	11,8	0,2	11,78	-0,02	CH2Brill	10,77	0,02	10,74	-0,03	
JF	10,5	0,3	10,69	0, 19	CH2Br2 -	10,49	0,02	10,49	0,00	
U,	11,48	0,01	11,48	0,00	CHULF 2-	12,45	0,05	12,51	. 0,06	
Bra	11,1	0,2	11,00	-0,I	CHBrFz	12,1	0,2	11,9	-0,2	
Br.	10,53	0,05	10,52	-0,0I	CHCL,	12,42	0,03	11,25	-1,17	
TUE	10,31	0,02	10,37	. 0,06	CHBr, CL	10,59	0,02	10,74	0,15	
JBr	9,98	0,03	9,89	-0,09	CHBra	10,51	0,02	10,48	-0,03	
J,	9,28	0,05	9,27	-0,0I	CUE	12,92	0,02	12,75	-0,17	
BUF.	13,1	0,3	12,86	-0,24	CBrF.	II,78	0,03	12,14	0,36	
BBCE.	11,95	0,3	12,19	0,24	CJF,	9,33	0,02	11,35	2,02	
BJF,	10,4	0,3	11,31	0,91	CU,F,	11,7	0,5	II,93	.0,23	
BUL.F	11,5	0,3	II,80	0,30	CBr1F2	11,07	0,03	-II,07	0,00	
BB-UF	10,4	0,3	11,3	0,9	CU,F	11,77	0,02	II,77	0,00	
BBr.F	11,1	0,3	10,8	-0,3	CBrjF	10,67	0,02	10,66	-0,0I	
RTUF	10,2	0,3	10,65	0,45	ca4	II,5		II,5	0,00	
BJBcF	10,1	0,3	10,15	0,05						
B7.F	9,7	0,3	9,5	-0,2			ىمىڭ ھەھىڭ مىن. بار			
B(L.	11,60	0,02	11,60	0,00					-	
BB-CL,	11,1	0,3	11,28	0,18		i si ji kar				
BB- (1	10,8	0,3	10,96	0,16				1 (a) - 1		
RR	10,72	0,05	10,64	-0,08			31 juli			
BJBr	9,7	0,3	10,22	0,52						
B7, ce	9,5	0,3	10,11	0,6I						
BJ.Br	9,4	0,3	9,79	0,39						
BJ.	9,24	0,3	9,37	0,13						