12/11-70

P12 - 4904

Ю.С. Короткин

ИЗУЧЕНИЕ КОМПЛЕКСООБРАЗОВАНИЯ АКТИНИДНЫХ ЭЛЕМЕНТОВ В Н**NO₃ и HClO₄** БУМАЖНОЙ ХРОМАТОГРАФИЕЙ

P12 - 4904

Ю.С. Короткин

ИЗУЧЕНИЕ КОМПЛЕКСООБРАЗОВАНИЯ АКТИНИДНЫХ ЭЛЕМЕНТОВ В **НNO₃ И HClO₄** БУМАЖНОЙ ХРОМАТОГРАФИЕЙ

Направлено в журнал "Радиохимия".

OUBERTHONEL & LEVEL REALIS & N . S. • 1

8220/2 40

Вид зависимости подвижности (R_f) элемента от концентрации кислоты в бумажной хроматографии определяется подвижностями отдельных комплексных форм элемента прй условии преобладания одного вида комплексного иона в данной области концентраций кислоты.

Очевидно, что подвижности ионов, например $Pu(NO_3)_2^{2+}$, $Pu(NO_3)_4^0$ и $P_u(NO_3)_5^-$, различны, и поэтому график зависимости R_f от концентрации кислоты должен состоять из ряда пересекающихся линий, каждая из которых соответствует области существования конкретного комплексного иона. В кислотах, например $HClO_4$, где комплексообразование не происходит или во всем интервале концентраций кислоты существует один комплексный ион, зависимость $R_f = f[HClO_4]$ должна быть прямолинейной (см. рис. 1 и 2 в работе^{/1/}). Аналогичные зависимости получены для ртути в $HClO_4$, HCl, H_2SO_4 и H_3PO_4 в^{/2/}.

В настоящей работе сделана попытка обосновать сказанное выше и исследовать области существования комплексных форм актинидных элементов от U до Cf в растворах азотной и хлорной кислот. Для большей наглядности по данным работы $^{/1/}$ построен график $(\frac{1}{R_r}-1)=f(HNO_3)$ (рис. 1). Все данные по опытам в HClO₄, используемые в дальнейшем, приведены в работе $^{/1/}$. Рассмотрим вначале на этом графике кривые для Pu(IV), Pu(VI) и U(VI), т.е. тех элементов, для которых есть литературные данные по комплексообразованию в HNO₃.

Четырехвалентный плутоний

Установлено^{/3/}, что в растворах азотной кислоты Pu(IV) ступенчато образует комплексы от $Pu(NO_3)^{3+}$ до $Pu(NO_3)^{2-}_6$. В работе Лаписа^{/4/} указывается, что присоединение NO_3^- -групп к Pu(IV) при любой их концентрации наблюдается лишь при достижении определенной концентрации H⁺ - ионов в следующей последовательности: при увеличении концентрации HNO₃ до 1,5 М образуется $Pu(NO_3)^{3+}$, до 2,1М HNO₃ - $Pu(NO_3)^{2+}_2$, до 3,8М - $Pu(NO_3)^+_3$, до 5,6М - $Pu(NO_3)^0_4$, до 7,1М - $Pu(NO_3)^-_6$. Сверх 7,1М - $Pu(NO_3)^{2-}_6$. При концентрации HNO₃ > 11,67М весь Pu(IV)находится в виде $Pu(NO_3)^{2-}_6$.

В пределах точности измерения (см.рис.1) изломы на кривой для Pu(IV) происходят при тех же концентрациях HNO₃ (в М/л): 1,5; 2,2; 4,3; 5,7; 7,0; 10,5 - 11,5.

Спектральные данные $^{/3/}$ указывают на отсутствие комплексообразования $P_u(IV)$ даже в концентрированных растворах $HClO_4$. Опыты по электромиграции $^{/3/}$ показывают, что $P_u(IV)$ существует в виде катионов до 10М $HClO_4$.

Этим результатам соответствует линейная зависимость функции R = f[HCl0,] для $P_u(IV)$.

Таким образом, совпадение концентраций HNO₃, при которых происходит присоединение NO_3^- - групп к Pu(IV) и при которых кривая R_f = f [HNO₃] имеет изломы, а также прямолинейность функции R_f = f(HCO₄] позволяют сделать вывод о том, что непрямолинейный харак-тер зависимости R_f = f[HNO₃] обусловлен последовательным образованием нитратных комплексов плутония (IV)

Шестивалентный плутоний

Из работ^{/3,5,6/} следует, что до 4М растворов HNO₃ образуются моно- и динитратные комплексы Pu(VI), а в интервале концентраций HNO₃ от 4M до 9,8M существует $P_u O_2 (NO_3)_3^-$. По Хиндмену^{/5/} спектральная характеристика ионов $P_u(VI)$ в растворах HClO₄ (от 10⁻⁴ до 6M) остается неизменной, а электромиграция^{/3/} показывает, что до 10M HClO₄ Pu(VI) существует в виде катионов.

Прямолинейная зависимость $R_{f} = f[HCIO_{4}]$ для $P_{u}(VI)$ ^{/ I/} соответствует этим данным. Изломы на кривой $R_{f} = f[HNO_{3}]$ происходят при концентрации HNO₃, равной 4M и 10,5M. Это значит, что при 10,5M HNO₃ образуется ион $P_{u}O_{2}(NO_{3})_{4}^{2-}$.

Если взять за основу работу⁷⁷, то при 10,5М HNO 3 образуется $P_uO_a(NO_a)_a^{-1}$, а при 4М HNO 3 - $P_uO_2(NO_3)_2^{0}$.

Шестивалентный уран

Установлено^{/8/}, что при кислотностях до 2М HNO₃ уранил существует в форме UO_2^{2+} и $UO_2(NO_3)^+$, от 2 до 5М HNO₃ – в виде $UO_2(NO_3)_2^0$, а увеличение концентрации кислоты выше 5М приводит к постепенному накоплению анионных комплексов уранила. Изломы на кривой $(\frac{1}{R_r}-1)=f[HNO_3]$ относятся к 2,3М, 6,5М и 10,5М HNO₃, т.е. $UO_2(NO_3)_2^0$ образуется при концентрации 2,3М, $UO_2(NO_3)_3^-$ при 6,5М HNO₃, что соответствует данным работы^{/8/}. Образование $UO_2(NO_3)_4^2$ можно отнести к 10,5М HNO₃.</sup>

Спектральные данные^{/9/} говорят об отсутствии комплексообразования между ионом уранила и СЮ₄ - ионами в интервале от 0 до 7,5М HClO₄ . Зависимость R, от концентрации HClO₄ является прямолинейной, что подтверждает сказанное выше.

Приведенные данные достаточно убедительно показывают, что непрямолинейность зависимости R_f = f [HNO₃] определяется комплексообразованием элементов в азотной кислоте.

Исходя из этого далее сделана попытка изучить комплексообразование Np(IV), Np(VI), Am(III), Cm(III)и Cf(III) в растворах азотной кислоты.

Нептуний четырехвалентный

Ввиду подобия по химическим свойствам плутонию (IV) Np(IV) может образовывать комплексы вплоть до Np(NO₃)²⁻₆. Так же, как и у плутония, образование комплексов должно происходить ступенчато. Из работы Риана^{/10/} известно, что в 10М HNO₃ почти весь Pu(IV) находится в форме $Pu(NO_3)^2_6$, а в 11,5М растворе HNO₃ нептуний существует только как Np(NO₃)²⁻₆. Таким образом, исходя из литературных данных и зависимости $R_f = f[HNO_3]$ можно сделать вывод о том, что до 2М HNO₃ существует Np(NO₃)³⁺, с 2М HNO₃ образуется Np(NO₃)²⁺₆, с 4,5М - Np(NO₃)⁴, с 6,5М - Np(NO₃)⁰₄, с 8М - Np(NO₃)⁵₆ и с 11М - Np(NO₃)²⁻₆.

Зависимость R = f [HCl 0] является прямолинейной.

Нептуний шестивалентный

Комплексные соединения Np(VI) должны напоминать соединения Pu(VI). В азтнокислых растворах Np(VI) наблюдается увеличение интенсивности поглощения в ультрафиолетовой области спектра при концентрации HNO₃ 3,5M^{/11/}. По зависимости R₁=f[HNO₃] можно предположить, что Np(VI) образует четыре комплекса. 1-й комплекс в 2,8M HNO₃ - это, вероятно, NpO₂(NO₃)⁺, 2-й - в 7M HNO₃ - NpO₂(NO₃)⁰₂, 3-й - в 9M HNO₃ - NpO₂(NO₃)³ и 4-й - в 11,5M HNO₃ - NpO₂(NO₃)²₄. Зависимость R₁=f[HClO₄] является для Np(VI) прямолинейной.

Трехвалентные америций, кюрий, калифорний

Спектральные и электромиграционные данные ^{/12/} говорят о комплексообразовании Am(III) в азотнокислых растворах. При концентрации HNO_a > 10M почти весь Am (III) мигрирует к аноду. Очевидно, что Am , Cm и Cf подобно Pu(III) в азотной кислоте должны образовывать комплексы ступенчато /13/.

Авторы работы $^{/14/}$ определили, что прир H = 1,5 в HNO₃ существуют только Am(NO₃)²⁺ и Cm(NO₃)²⁺. О комплексообразовании Cm и Cf говорит их экстракция из концентрированной HNO₃ трибутилфосфатом. Образование анионных комплексов Am , Cm и, очевидно, Cf и Es подтверждается экстракцией их третичными и четвертичными аминами в виде (R₃ NH)₂ Am (NO₃)₅ и (R₃ CH₃ N) Am(NO₃)₄ / 15/.

Зависимость $R_{f} = f[HNO_{3}]$ для Am, Cm и Cf, как и следовало ожидать, является непрямолинейной, а зависимость $R_{f} = f[HClO_{4}]$ прямолинейной. На основании изложенного выше можно предположить, что в виде мононитратов Am существует до 2,5M HNO₃, Cm – до 2,0M, Cf – до 3,5M HNO₃; в виде $Me(NO_{3})_{2}^{+}$ Am – до 3,5M, Cm и Cf -до 4,5M HNO₃; в виде $Me(NO_{3})_{3}^{0}$ Am и Cf – до 7,0M, а Cm – до 8,0M; в форме $Me(NO_{3})_{4}^{-}$ они существуют до 9,5 – 10,0M HNO₃, а далее, вероятно, присоединяют еще одну группу NO₃⁻.

По опубликованным ^{/16,17/} и полученным в настоящей работе данным выявлена зависимость образования комплексных форм актинидных элементов от концентрации азотной кислоты (рис. 2,3,4). Характер этой зависимости позволил распространить ее на неисследованные элементы в разных валентных состояниях. Наклон прямых можно, очевидно, объяснить изменением прочности комплексов в ряду актинидов.

Выводы

Показано, что непрямолинейность зависимости R_f = f [HNO₃]
для актинидных элементов связана с комплексообразованием этих
элементов в азотной кислоте.

2. Применение метода R, -спектров позволило сделать выводы о составе и области существования нитратных комплексов актинидных элементов и их валентных форм в азотной кислоте.

3

Литература

- 1. Ю.С.Короткин. Препринт ОИЯИ, Р12-4903, Дубна, 1970.
- 2. M. Lederer. J. Chromatog., 7, 366 (1962).
- 3. Сб. "Актиниды" под ред. Г.Сиборга, гл. 9, стр. 274, 280, М., ИЛ, 1955.
- 4. Л.В.Лапис, Б.Г.Пожарский, В.В.Фомин. Журнал структ.химии, <u>1</u>, 4, 417 (1960).
- 5. Сб. "Актиниды", гл. 9, стр. 298, М., ИЛ, 1955.
- 6. М.Е.Кревинская и др. Радиохимия, <u>1</u>, 5, 554 (1959).
- 7. В.М. Вдовенко и др. Радиохимия, <u>2</u>, 3, 310 (1960).
- 8. Б.Г.Пожарский. Радиохимия, 4, 5, 561 (1962).
- 9. V. Hovorka, J. Vorisek. Chem.listy, <u>34</u>, 1, 55 (1940).
- 10.J.L. Ryan, J.Phys.Chemistry, <u>64</u>, 10, 1375 (1960).
- 11. J.C. Hindman et al. The. Transuranium Elements, New York, paper 15.2, p.103 (1949).
- Г.Н.Яковлев. Доклады советской делегации на Межд.конф. по мирн. использованию ат. энергии, Женева, 1955. Химия ядерного горючего, стр. 475, М., ГОНТИ (1956).
- 13. А.Д.Гельман и др.. Комплексные соединения трансурановых элементов, стр. 175, М., АН СССР (1961).
- 14. И.А.Лебедев и др. Радиохимия, 2, 5, 549 (1960).
- 15. E.P. Horwitz et al. J. Inorg. Nucl. Chem., 28, 2313 (1966).
- 16. Н.П.Ермолаев и Н.Н.Крот. Радиохимия, 4, 6, 678 (1962).
- 17. V. Korgaonkar, Rapport CEA-R3222 (1967).

Рукопись поступила в издательский отдел 26 января 1970 года.

8

-

Рис. 3. Комплексообразование 4-валентных актинидных элементов в HNO 3.

Рис. 4. Комплексообразование 6-валентных актинидных элементов в HNO₃.

10