

P12 - 4504

U-69

Т.С.Зварова, И.Звара

РАЗДЕЛЕНИЕ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ ПРИ ПОМОЩИ ГАЗОВОЙ ХРОМАТОГРАФИИ ХЛОРИДОВ

P12 - 4504

ţ

Т.С.Зварова, И.Звара

РАЗДЕЛЕНИЕ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ ПРИ ПОМОЩИ ГАЗОВОЙ ХРОМАТОГРАФИИ ХЛОРИДОВ

Направлено в журнал "Chromatography"

7858/2 w.

До настоящего времени газохроматографическое разделение редкоземельных элементов осуществлялось /1,2/ только с использованием летучих хелатов – трисдикетонатов (в том числе фторированных) с разветвленными углеродными цепями. Сложность синтеза исходных веществ затрудянет их широкое применение в газожидкостной хроматографии. Неорганические соединения редкоземельных элементов из-за их низкой летучести в газовой хроматографии не использовались.

Недавно Груэн и Эй^{/3/} с помощью спектроскопических методов обнаружили, что при нагревании треххлористого неодима в парах треххлористого алюминия (при температурах $200^{\circ}-800^{\circ}$) содержание неодима в паровой фазе намного превышает содержание при давлении насыщенного пара Nd G₃. Они предположили, что это явление обусловлено образованием летучих соединений типа Nd (Al G₄)_n G_{3-n} В настоящей работе предпринята попытка использования такого рода соединений для разделения редкоземельных элементов методом газовой хроматографии. Предварительные опыты показали, что образование летучих комплексов с хлористым алюминием является общим свойством хлоридов редкоземельных элементов. Чтобы препятствовать распаду комплексов, в качестве газа-носителя использовался инертный газ в смеси с парами хлористого

алюминия, которые служат заодно для динамической модификации поверхности стеклянной капиллярной колонки.

Экспериментальная часть

Опыты проводились на установке, показанной схематически на рис. 1. Система печей (1,2,3,4) создавала нужный температурный режим вдоль стеклянной трубки (5), состоящей из нескольких частей, спаянных в одно целое. Спиральная часть этой трубки с внуренним диаметром 1 мм и длиной 2,5 м, находящаяся в термостате (1), представляла собой хроматографическую колонку. Азот (расход 12 мл/мин) после реометра (8), цеолитного осушителя (9) пропускался для насышения хлористым алюминием через трубку (6), в которую на участке печи 4 насыпался твердый Al Ω_3 . Температура в печи 4 поддерживалась на 20-30⁰ выше, чем в печи (3), где температура соответствовала нужной в опыте упругости пара хлорида алюминия, которая, таким образом, устанавливалась путем сброса создавшегося здесь пересыщения. В проведенных опытах упругость пара Al₂ Ω_6 изменялась от 40 до 170 мм рт ст., для чего температура в печи (3) варьировалась в пределах 138^0-155° С.

Ввод пробы осуществлялся следующим образом. В стеклянной лодочке высушивался раствор радиоизотопов, и остаток последовательно обрабатывался упариванием с концентрированными HNO₃ и HCl . Лодочка помещалась в трубку (5) в зону печи(2) при температуре 180°C. Через трубку в течение нескольких минут продувался азот, насыщенный в барботере (10) (комн. темп.) парами тионилхлорида, для обезвоживания хлоридов редких земель. Затем тионилхлорида, для обезвоживания хлоридов редких земель. Затем тионилхлорид отключался, в основную трубку (5) вставлялась трубка (6) с Al Cl₃, и в течение 5 минут через нее пропускался азот с парами хлористого алюминия. После этого газовый поток останавливался, температура в печи (2) резко повышалась до 500°C. Снова включалась подача газа. Отгон образовавшихся соединений лантанидов из лодочки контролировался сцинтилляционным счётчиком (12) с кристаллом Na J , показания которого фиксировались самописцем. Время введения пробы равнялось примерно одной минуте.

Газообразные комплексные хлориды лантанидов конденсировались на выходе из термостата (1) вместе с хлоридом алюминия в трубочке (7), вставленной в основную трубку (5). Через 2 минуты трубочка (7) выдвигалась из печи на 1 см, таким образом происходил отбор конденсата во времени. Измерением интенсивности у- и β – излучения вдоль трубочки снималась хроматограмма. Использовались изотопы ¹⁴⁴Ce , ¹⁹³Pr , ¹⁴⁷Pm , ¹⁵⁵Eu , ^{146,150}Gd , ¹⁶⁰Tb , ¹⁵⁹Dy ^{165,167}Tm , ¹⁶⁶Yb , ¹⁷⁰Lu без носителя или с несколькими микрограммами носителя,

Результаты и обсуждение

Опыты с отдельными элементами показали, что при парциальном давлении Al₂Cl₆~100 мм рт. ст. хлориды Ce , Pr , Pm , Gd , Tb Dy , Tm , Yb , Lu быстро образуют летучие соединения с хлоридом алюминия, транспортирующиеся газом-носителем в достаточно широкой области температур (100-500°C). Было установлено, что времена удерживания уменьшаются с увеличением порядкового номера элемента. Особое поведение было отмечено у европия, который в тех же условиях отгонялся с лодочки очень медленно и распределялся по всему тракту.

Обнаруженная летучесть хлоридов редких земель в присутствии хлористого алюминия, по-видимому, связана с образованием двойных соединений состава Ln AlCl₆ (Ln – редкоземельный элемент), что можно предположить по аналогии со стехиометрией обнаруженных

ранее в парах комплексов Na AI Ω_4 /4/, BeAI Ω_5 /5/, Fe AI Ω_6 /6/, а также K Ln Ω_4 /7/. Последние являются весьма прочными соединениями, устойчивость которых возрастает от Lu к La. Как показали Новиков и Гаврюченков /7/, двойные соединения в паре легко образуются в случае хлоридов, которые склонны к димеризации, причем двойные соединения по устойчивости к диссоциации часто превосходят димеры исходных простых хлоридов. По имеющимся данным /7,8/ димеры трихлоридов редкоземельных элементов отличаются значительной прочностью – теплота димеризации находится в пределах от 32 до 48 ккал/ моль. Все эти данные говорят в пользу предположения о существовании комплексов Ln AI Ω_6 .

Исходя из этого, отличие в поведении европия в наших опытах по сравнению с другими редкими землями, очевидно, можно объяснить неустойчивостью трихлорида европия, который при нагревании переходит в Eu G₂ ^{/9/}, не дающий димерных форм в парах^{/8/}. Иттербий, который также может образовать дихлорид, показал в отличие от европия "нормальное" поведение. Это можно объяснить большой разницей в значениях Δ H реакции диссоциации трихлоридов, которые составляют 12 ккал/моль и 24 ккал/моль для жидких Eu G₃ и Yb G₃ соответственно. Эта же величина для Sm G₃ равна 27 ккал/моль, и поэтому, вероятно, самарий будет вести себя, как большинство редкоземельных элементов.

Следует, вообще говоря, ожидать сложной зависимости времени удерживания от температуры колонки. При повышении температуры действуют факторы, оказывающие противоположное влияние. С одной стороны, ускоряется десорбция комплекса, что сокращает время удерживания, с другой стороны, по той же причине ослабляется модифицирующее действие паров Al₂ Cl₆ на поверхность, что может привести к увеличению эффективной теплоты адсорбции комплекса. На рис. 2 показана зависимость положения и формы пика от температуры колонки. Опыты проводились с ¹⁶⁰ Ть при упругости пара Al₂ Cl₆, равной 115 мм рт. ст.

Исходя из времен удерживания были рассчитаны теплоты адсорбции комплекса тербия по молекулярно-кинетическому уравнению /11/.

Полученные значения: 30,4 ккал/моль при 208^оС; 31,0 ккал/моль при 224^оС и 30,3 ккал/моль при 235^оС – практически совпадают, и, следовательно, смещение пика происходит в основном за счёт ускорения десорбции комплекса.

Время удерживания зависит от парциальной упругости пара хлористого алюминия в газе-носителе. При одной и той же температуре хроматографирования увеличением упругости пара Al Cl « можно ускорить выход и сузить зону выхода элемента. Результаты изучения хлори при температуре колонки 220° показаны на рис. 3. Данные да ¹⁶⁰ Тb по давлению пара Al 2 C 6 в зависимости от температуры взяты из справочника . Резкая зависимость времени удерживания от количест венного состава газа-носителя подтверждает представления о динамиче кой модификации поверхности стекла адсорбирующимися парами хлорида алюминия / 13, 14/. Опыты по разделению смесей редкоземельных элементов дали удовлетворительные результаты несмотря на очень малую длину колонки. На рис. 4 показана хроматограмма смеси ¹⁶⁰ Тр и 144 Се. На рис. 5 представлено разделение смеси соседних тяжелых дантанидных элементов Tm, Yb и Lu. Спектры у - излучения отдельных порций конденсата снимались на спектрометре с кристаллом Ge(Li), и содержание отдельных изотопов названных элементов определялось по их наиболее интенсивным и характерным у - лучам в области энергий < 0,5 Мэв. Полученные коэффициенты разделения а Lu/_{Yb} = 1,8 и а ^{Yb/}_{Tm}= 1,7 существенно превосходят коэффициенты разделения этих тяжелых редких земель в ионообменной хроматогра-

6

/15,16/ и газовой хроматографии хелатов /1,2,17/. В экстракционной хроматографии достигаются большие коэффициенты разделения /18/, однако при обратном порядке вымывания.

Очевидными преимуществами рассматриваемого метода является простота синтеза летучих соединений в процессе введения пробы, возможность работы как с индикаторными, так и с макроколичествами элементов.

Большие коэффициенты разделения показывают перспективность метода и позволяют надеяться на достижение хорошего качества разделения. В настоящее время проводятся опыты по определению оптимальных условий разделения смесей лантанидов и актинидов.

Авторы благодарны H.A.Митченко за помощь в работе-и H.A.Лебедеву за предоставление некоторых радиоизотопов.

Литература

1. K.J.Eisentraut, R.E.Sievers, J.Am. Chem. Soc., <u>87</u>, 5254 (1965).

- 2. T.Shigematsu, M.Matsui, K.Utsunomiya. Bull. Chem. Soc. Jap., <u>41</u>, 763 (1968).
- 3. D.M.Gruen, H.A. ϕ ye. Inorg. Nucl. Chem. Letters., 3, 453 (1967).
- 4. E.W.Dewing, J.Am. Chem. Soc., 77, 2639 (1955).
- 5. К.Н.Семененко, Т.Н.Наумова, Л.Н.Горохов, А.В.Новоселова. Докл. АН СССР, <u>154</u>, 648 (1964).
- 6. К.Н.Семененко, Т.Н.Наумова, Л.Н.Горохов, Г.А.Семенова, А.В.Новоселова. Докл. АН СССР, <u>154</u>, 169 (1964).
- 7. Г.И.Новиков, Ф.Г.Гаврюченков, Усп. химии, <u>36</u>, 399 (1967).
- 8. J.W.Hastie, P.Ficalora, J.L.Margrave. J. Less-Common Metals, 14, 83 (1968).

8

9. О.Г.Поляченок, Г.И.Новиков. Ж.неорган. химии, 9, 429 (1964).

- 10. О.Г.Полячонок, Г.И.Новиков. Ж.неорган. химии, 9, 773 (1964).
- 11. Ю.Т.Чубурков, И.Звара, Б.В.Шилов. Препринт ОИЯИ, Р7-4021, Дубна, 1968.
- 12. Справочник химика, т. І, ГХИ, М.-Л., 1962.
- И.Звара, Ю.Т.Чубурков, Т.С.Зварова, Р.Цалетка. Препринт ОИЯИ, Д6-3281, Дубна, 1967.
- 14. Т.С.Зварова, Ю.Т.Чубурков, И.Звара. Препринт ОИЯИ, Р6-4130, Дубна, 1968.
- Б.К.Преображенский, А.В.Калямин, О.М.Лилова. Радиохимия, 2, 239 (1960).
- 16. G.Choppin, R.Silva. J.Inorg. Nucl. Chem., <u>3</u>, 153 (1956).
- 17. M.Tonaka, T.Shono, K.Shinza, Anal. Chim. Acta., <u>43</u>, 157 (1968).

9

18. R.J.Sochacka, S.Siekierski. J. Chromat., <u>16</u>, 376 (1964).

Рукопись поступила в издательский отдел 26 мая 1969 года.

ţ

Рис. 1. Хроматографическая аппаратура (объяснения в тексте).

Рис. 2. Температурная зависимость времени удерживания для тербия (4 мкг носителя). Парциальное давление Al₂ Cl₆ в газеносителе 115 мм рт. ст., расход азота 12 мл/мин.

.

