С 445 H-837 ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубна

XIANG

1967.

Million and

P12 - 3529

23/x1-67

Ю.В. Норсеев, В.А. Халкин

ОПРЕДЕЛЕНИЕ УСТОЙЧИВОСТИ ХЛОРИДНЫХ КОМПЛЕКСОВ ОДНОВАЛЕНТНОГО КАТИОНА АСТАТА В АЗОТНОКИСЛЫХ РАСТВОРАХ

P12 - 3529

Ю.В. Норсеев, В.А. Халкин

ОПРЕДЕЛЕНИЕ УСТОЙЧИВОСТИ ХЛОРИДНЫХ КОМПЛЕКСОВ ОДНОВАЛЕНТНОГО КАТИОНА АСТАТА В АЗОТНОКИСЛЫХ РАСТВОРАХ

Направлено в Inorganic Nuclear Chemistry

0 / 2 / 0

В растворах азотной кислоты, содержащих бихромат, астат образует неопределенный по составу устойчивый одновалентный катион At(?)^{+1/1/}. При изучении химических свойств этого иона было найдено, что он связывается в присутствии хлоридов в относительно прочные анионные комплексы^{/2,3/}.

На основании анализа экспериментальных данных об отрицательном влиянии соляной кислоты на адсорбщию катиона астата металлической платиной из I M H NO₃ -5. 10^{-3} MH₂Cr₂O₇ было показано, что при содержании 2. 10^{-3} M<[HCI]< < 2. 10^{-2} M вероятное число аддендов в образующемся хлоридном комплексе - два, а его константа устойчивости $\beta_2 \approx 7;5 \cdot 10^5$ M^{-2/3/}. Однако полученное значение следует рассматривать только как предварительную оценку из-за ряда допущений, сделанных при расчете этой величины. Желательно было рассчитать константы устойчивости хлоридных комплексов катиона астата, исходя из данных, полученных каким-либо другим способом.

Настоящая работа посвящена решению этой задачи методом катионного обмена, который в данном случае, вероятно, является единственно возможным.

Экспериментальная часть

Астат получался по реакциям глубокого расшепления тория протонами с энергией 660 Мэв. Для приготовления его радиохимически чистых препаратов использовалась ранее разработанная методика^{/3/}, схема которой приведена на рис. 1.

Для контроля за чистотой препаратов астата снимались их гамма-и альфаспектры на многоканальных спектрометрах с германиево-литиевыми и кремниевыми детекторами и измерялись с помощью сцинтилляционных счетчиков с

кристаллами Na J (Tl) периоды полураспада. При анализе полученных данных в препаратах астата не были найдены радиоактивные загрязнения. Возможный верхний предел загрязнений к моменту окончания выделения составляет < 0,1% от радиоактивности изотопов астата.

Астат в препарате, полученном после анодного растворения (1,5-2 мл), восстанавливался при нагревании 1-2 каплями насыщенного водного раствора SO₂ и затем окислялся в течение получаса бихроматом при 100°C. Исходный раствор астата, использовавшийся в дальнейших опытах, был 0,5 M HNO₃ --0,01 M H₂Cr₂ O₇, ≈ 0,5 м C/мл.

Определение коэффициентов распределения катиона астата между смолой и раствором (Kd) выполнялось динамическим методом на колонках диаметром 2 мм и высотой 100 мм, заполненных сульфокатнонитом Дауэкс 50 х8 сферической формы, 200-400 меш. Вес смолы в колонках (g) 102±2 мг, в пересчёте на абсолютно сухой катионит. Свободный объем колонок (V_{CB}) составлял 0,10-0,13 мл.

Перед загрузкой в колонки ионит отмывался от следов возможных восстановителей последовательно 0,1 м (NH₄)₂ Се (NO₃)₅- 3M HNO₃ и 0,01 M H₂Cr₂O₇ -- 3M HNO₃. Далее смола промывалась бидистиллятом и высушивалась при 60°C.

Вся работа была выполнена на одних и тех же колонках без замены смолы. Перед очередным определением катионит в колонке промывался $3 \text{ M} \text{ HN O}_3$ $-5\cdot10^{-3}$ M H₂Cr₂O₇ (5 мл) и тем элюентом, для которого определялось Kd. Следы этого раствора удалялись капилляром до уровня ионита и в колонку вносилось 0,025-0,05 мл исходного раствора астата. Элюирование проводилось со скоростью = 3 мл/см^2 мин (3 капли/мин). Вытекающий раствор собирался отдельными фракциями, радиоактивность которых измерялась сцинтилляционным счетчиком с кристаллом NaJ(Tl) в геометрии, близкой к 4π . По результатам измерений определялся объем элюента, соответствующий максимуму на кривой вымывания (V_{MAKC}). Коэффициенты распределения рассчитывались по обычной формуле: Kd = (V_{MAKC} -V_{CB})/g. Для каждого элюирующего раствора проводилось не менее пяти определений значения Kd на различных колонках. Все экспериментальные величины, приведенные в таблицах и на графиках, даны со среднеквадратичной ошибкой. Растворы HNO₃ - HCl - H₂Cr₂O₇ готовились

i.

непосредственно перед опытом. Контрольными определеннями, выполненными методом потенциометрической концентрационной ячейки^{/4/}, было показано, что миллимолекулярные концентрации НСІ в элюентах остаются постоянными в течение нескольких дней.

Для получения хорошо воспроизводимых результатов при подготовке эксперимента принимались меры предосторожности против случайных загрязнений реактивов, посуды и рабочих мест малыми количествами хлоридов.

Результаты и обсуждение

Константы устойчивости хлоридных комплексов астата рассчитывались нами из зависимости а ₀ = Kd/Kd₀ =f([Cl⁻]), где Kd – измеренный коэффициент распределения астата между катионитом и раствором, содержащим HCl , Kd₀ – та же величина в отсутствие комплексообразователя^{/5/}.

После серии предварительных опытов для измерений Кd были выбраны системы 0,5 М HNO₃ - 5.10⁻³ М H₂Cr₂O₇ - n M HCl, где 2.10⁻³ М HCl ≤ n ≤ 6.10⁻³ М HCl . При меньших концентрациях незначительные неточности при подготовке растворов, содержащих HCl , приводят к резким изменениям Kd x), а при более высоких растет относительная ошибка определения из-за малых значений Kd .

Для достоверного определения Кd₀ его значения были измерены в интервале концентраций HNO₃ от 0,42 M до 1,35 M. В координатах lg1/Kd₀ -lg[HNO₃] экспериментальные точки очень хорошо ложатся на прямую с тангенсом угла наклона к оси абсцисс 1,35 (рис. 2), что характерно для одновалентных катионов: по нашим определениям эта величина для Cs⁺¹ и T1⁺¹ равна 1,4^{/1,6/}. Из графика, приведенного на рис. 2, интерполяцией было определено, что значение Kd₀ в растворе 0,5 H NO₃ - 5·10⁻³ H₂Cr₂O₇ равно 80^{xx}).

Экспериментальные значения К а а приведены в таблице 1.

x)
$$K_{d} \approx K_{d_0} e^{-6.10^2 [H C_1]}$$
 при [HC1] < 3.10⁻³
xx) Это и прурно опос

¹⁰¹⁷ Это и другие значения К_d иесколько выше, чем приведенные в работе^{/1/}. Такое расхождение можно объяснить меньшей динамической емкостью смолы и загрязнением элюентов хлоридами (≈ 5·10-4 М) в ранее выполненных опытах.

[HC1]	K d	α ₀ ⇔K _d /K _{d0}		
2.10 ⁻³	24,3 <u>+</u> 4,4	. 0,3 <u>+</u> 0,055		
3.10 ⁻³	I4,4 <u>+</u> 0,5	0,18 <u>+</u> 0,006		
4.IO ⁻³	10,5 <u>+</u> 0,7	0,13 <u>+</u> 0,01		
5.10-3	7,5 <u>+</u> 0,5	0,09 <u>+</u> 0,006		
6.I0 ⁻³	5,8 <u>+</u> 0,8	0,07 <u>+</u> 0,0I		

Распределение астата между катионитом Дауэкс 50 x 8 и 0,5 М HNO - - M HCI

Грубое графическое дифференцирование кривой $\lg_0 = f(\lg [HCl])$ показывает, что в нашем случае в выбранном интервале концентраций комплексообразователя лигандное число $\overline{n} \approx 1,5$. Следовательно, наиболее вероятное максимальное число аддендов в хлоридном комплексе катиона астата 2. Такое предположение позволяет воспользоваться для расчета первой (β_1) и второй (β_2) константами устойчивости простой линейной зависимостью:

$$(1 - a_0)/a_0$$
[HCi] = $\beta_1 + \beta_2$ [HCi] /5 cTp. 119/

На рис. З в координатах (1- a₀)/a₀[HCl]-[HCl] приведены точки, рассчитанные по данным таблицы 1. Прямая через эти точки была проведена по методу наименьших квадратов. Из наклона прямой и ее пересечения с осью ординат следует, что константа устойчивости первого хлоридного комплекса астата

$$\beta_{1} = [At(?)Cl] / [At(?)^{+1}] [Cl^{-1}] = 7.10^{2} M^{-1}, a \text{ второго} - \beta_{2} = [At(?)Cl^{-1}_{2}] / [At(?)^{+1}] [Cl^{-1}]^{2} = 2.5.10^{5} M^{-2}.$$

Относительные стандартные отклонения этих значений +12%.

Найденные константы устойчивости, вероятно, близки к истинным, так как рассчитанные с их помощью К_а для растворов с различными концентрациями Н NO₃ и HCl хорошо совпадают с экспериментальными (таблица 2).

Таблица 2

[H NO 3]	[HC]]	к *) к *)	К а расч.	К _{а эксп.}
0,22	5.10 ⁻³	238	22 .	23 <u>+</u> I
0,33	5.10 ⁻³	I 4I	13	I2 <u>+</u> 0,5
0,43	5.10 ⁻³	· 97	9	8 <u>+</u> 0,2
0,65	4,5.10-3	55,5	6	6,I <u>+</u> 0,2
0,8	3.10 ⁻³	43,5	8	9,2 <u>+</u> 0,6

Расчетные и экспериментальные коэффициенты распределения астата между кати онитом Дауэкс 50 х 8 и растворами HNO₃ - HCl - 5.10⁻³ M H₂Cr O₄

х) Значения К_а экстраполированы и интеполированы из графика на рис. 1.

Полученные нами данные о свойствах астата, к сожалению, никак нельзя сравнить с подобными данными о других галловдах, с одной стороны, потому, что для них таких данных нет, а с другой, – нам неизвестен химический состав однозарядного положительного иона астата в азотнокислых бихроматосодержащих растворах.

Авторы считают своим приятным долгом выразить благодарность А.М. Акимовой и В.И. Кузину за большую помощь при проведении эксперимента.

Заключение

1. Методом нонного обмена на колонках, заполненных катионитом Дауэкс 50 х8, были определены коэффициенты распределения однозарядного положительного иона астата в (0,42-1,35) М НNO₃ – $5\cdot10^{-3}$ М H₂Cr₂O₇ и в растворах 0,5 М НNO₃ – (4+2). 10^{-3} М HCl – $5\cdot10^{-3}$ М H₂Cr₂O₇.

2. Из полученных данных следовало, что в выбранных экспериментальных условиях катион астата образует комплексы с одним и двумя анионами хлора, константы устойчивости которых $\beta_1 = 7 \cdot 10^2 \text{ M}^{-1}$ и $\beta_2 = 2.5 \cdot 10^5 \text{ M}^{-2}$.

3. Коэффициенты распределения, рассчитанные с помощью этих констант для растворов с различной концентрацией Η NO₃ и HCl , хорошо совпадают с определенными экспериментально. Это указывает на достоверность найденных значений β₁ и β₂.

Литература

- 1. Ван Фу-цзун, Ю.В. Норсеев, В.А. Халкин, Чао Тао-нань. Радиохимия", <u>5</u>, №3, 351-355 (1963).
- 2. Ван Фу-цэун, Н.Г. Крылов, Ю.В. Норсеев, Чао Тао-нань, В.А. Халкин. Сборник Соосаждение и адсорбния радиоактивных элементов. Изд. "Наука" М-Л 1965 г. стр. 80.
- 3. Ю.В. Норсеев, Чао Тао-нань, В.А. Халкин. "Радиохимия", 8, № 5, 497 (1966).
- 4. J. Roburn, Analyst, 90, N 1073, 467 (1965).
- 5. Ф. Россоти, Х. Россоти. "Определение констант устойчивости и других констант равновесия в растворах". Изд. "Мир" М. 1965 стр. 290.
- 6. Ю.В. Норсеев. Диссертация. "Изучение вовых неорганических и элементоорганических форм астатина". Дубна-Ленинград 1965 г., стр. 51.

Рукопись поступила в издательский отдел 4 октября 1967 г.

Рис. 1. Схема методики выделения радиохимически чистых препаратов астата из тория, облученного протонами с энергией 660 Мэв.

Рис. 2. Распределение катиона астата между азотной кислотой и сульфокатионитом Дауэкс 50 x 8.

