<u>C449</u> A-37 5000/2-76

СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ДУБНА

13/x11-76

P12 - 10047

Б.Айхлер, Т.Реетц, В.П.Доманов

ОПРЕДЕЛЕНИЕ ТЕПЛОТЫ АДСОРБЦИИ НА ОСНОВЕ ТЕРМОХРОМАТОГРАФИЧЕСКИХ ДАННЫХ III. Элементы. Адсорбция на кварце и металлах

P12 - 10047

Б.Айхлер, Т.Реетц, В.П.Доманов

ОПРЕДЕЛЕНИЕ ТЕПЛОТЫ АДСОРБЦИИ НА ОСНОВЕ ТЕРМОХРОМАТОГРАФИЧЕСКИХ ДАННЫХ III. Элементы. Адсорбция на кварце и металлах

-		a taxe to be "to be a second	
Ĭ	061	. 3. 	natesta
N. Ora	٢.	tin yr r Arwyddia	Tanan 1
Î		马根衣角	LiA
~	A CONTRACTOR OF A CONTRACTOR A		

Для радиохимического разделения и идентификации продуктов ядерных реакций все шире используются процессы улетучивания и адсорбции /1-4/, быстродействие и селективность которых в основном определяются различием в теплотах адсорбции компонентов смеси на материалах мишени, сборника, хроматографической колонки и т.д. Поэтому при оценке возможности разделения необходимы, по крайней мере, приблизительные значения $-\Delta H_a^0$.

В первой части настоящей серии сообщений $^{/5/}$ был предложен метод расчета теплоты адсорбции по термохроматографическим данным, а в работе $^{/6/}$ было показано хорошее согласие между значениями ΔH_a^0 , найденными для хлоридов по этому методу из данных работ различных авторов.

В настоящей статье по методу работы ^{/5/}, оценены значения теплот адсорбции некоторых элементов – продуктов ядерных реакций на кварце, меди и никеле в атмосфере водорода.

ОСНОВНЫЕ ПОЛОЖЕНИЯ

Исходя из динамического уравнения идеальной линейной газовой хроматографии, в работе^{/5/} было получено уравнение:

$$-\frac{\mathbf{t}_{\mathbf{r}}\cdot\mathbf{\bar{v}}_{0}\cdot\mathbf{a}}{\mathbf{s}_{1}\cdot\mathbf{T}_{0}\cdot\mathbf{exp}\Delta\mathbf{S}_{a}^{0}/\mathbf{R}}=\mathbf{Ei}^{*}(-\frac{\Delta\mathbf{H}_{a}^{0}}{\mathbf{RT}_{A}})-\mathbf{E}_{1}^{*}(-\frac{\Delta\mathbf{H}_{a}^{0}}{\mathbf{RT}_{s}}),\qquad(1)$$

где t_r — время опыта (мин), v₀ — объемный расход газа-носителя (мл/мин), _а — температурный градиент, (град.см⁻¹); s_1 - поверхность неподвижной фазы на единицу длины колонки (см²), ΔS_a^0 - стандартная энтропия адсорбции, (кал/моль.град), ΔH_a^0 - стандартная энтальпия адсорбции, (ккал/моль), $T_0 = 298$ K, T_a - температура осаждения (K), T_s - температура стартового участка (K), $E_i^*(x)$ - интегральная показательная функция.

В левую часть этого уравнения входит набор экспериментальных параметров, которые в совокупности с температурой осаждения позволяют оценить величину ΔH_a^0 . В практических целях удобно пользоваться графическим представлением уравнения (1) работы $^{/5/}$.

Теплоту адсорбции атомов на поверхности металла можно отождествить с величиной Е – энергией связи между атомами адсорбата (A) и адсорбента-металла (M)^{12/}. Энергию поляризованной ковалентной связи Е можно оценить по уравнению:

$$E = \frac{1}{2} \left[D(A-A) + D(M-M) \right] + 23,06(x_A - x_M)^2 , \qquad (2)$$

где D(M-M) – энергия связи между двумя атомами металла на поверхности адсорбента, D(A-A) – энергия связи двухатомной молекулы (для расчета можно использовать данные работы ^{/13/}), х_A и х_M – электроотрицательность адсорб<u>ен</u>та и адсорбата по Паулингу.

Величину $\frac{1}{2}$ D(M-M) можно представить как отношение теплоты сублимации к координационному числу $n^{/12/}$:

$$\frac{1}{2}\bar{D}(M-M) = \frac{\Delta H^{2}_{298 B03\Gamma}}{n}$$
(3)

или приравнять половине энергии связи двухатомной молекулы:

$$\frac{1}{2}\bar{D}(M-M) = \frac{1}{2}D(M-M).$$
 (4)

Величину <u>1</u> D(A-A) можно выразить через половину стандартной теплоты диссоциации двухатомной молекулы:

$$\frac{1}{2}D(A-A) = \frac{\Delta H_{298 \text{ дисс.}}}{2}.$$
 (5)

Оба варианта (3) и (4), конечно, не являются строгими моделями поверхностной связи.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Температуры осаждения некоторых продуктов ядерных реакций на кварце в атмосфере водорода были определены в работах /8/ и /9/.

В настоящей статье определение T_A продуктов ядерных реакций на меди и никеле проводилось в кварцевых колонках, внутренняя поверхность которых футеровалась фольгами названных металлов. Скорость газа-носителя (водорода) составляла 20 мл/мин. Нагревательные устройства, приготовление радиоактивных препаратов и порядок проведения экспериментов были описаны в работах /4, 8, 9/. Температура стартового участка равнялась 950°С, время опыта – 60 мин. Перед опытом колонки прокаливались в атмосфере водорода при 800°С.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЯ

В табл. 1 представлены экспериментально определенные температуры осаждения ряда элементов и соответствующие им теплоты адсорбции, вычисленные по уравнению (1). Анализ данных таблицы показывает, что теплоты абсорбции и стандартные теплоты возгонки элементов связаны уравнением:

 $\Delta H^{0}_{a(i)} = (0,663 \pm 0,024) \Delta H^{0}_{289,\text{BO3F},(i)} - (1,17 \pm 1,16).$

Коэффициент корреляции К = 0,96.

В табл. 2 представлены температуры осаждения некоторых продуктов ядерных реакций на меди и никеле в атмосфере водорода. Значения – ΔH_a^0 вычислены по уравнению (1). Для сравнения в табл. З даны значения – ΔH_a^0 пределенные по уравнению (2) с использованием соотношений (3) и (4).

Различие экспериментально найденных значений теплот адсорбции на меди и никеле невелико. Напротив, соответствующие значения – ΔH_a^0 на кварце, как правило,

Таблица 1

Значения теплот адсорбции некоторых продуктов ядерных реакций на кварце в атмосфере водорода, вычисленные по уравнению (1)

Элемент	Ссылка	Температура	осажцения [⁰ К]	$-\Delta H_a^O \left[\frac{\kappa \kappa a \pi}{MO \pi b}\right]$	
Zn	/8/	633 <u>+</u> 20		25,0 ± 1,3	
Zn	/8/	693 ± 20		25,0 ± 1,3	
Ga	/8/	833 <u>+</u> 30		29,5 <u>+</u> 1,5	
Ge	/8/	I053 <u>+</u> 40		38.0 ± 2.0	
Âs	/8/	833 <u>+</u> 30		29,5 ± 1,5	
Дg	/8/	1223 + 20		45,0 + 2,4	
Âg	/4/	II33 <u>+</u> 20		45,0 ± 1,0	
Ca	/8/	593 <u>+</u> 20		$21,4 \pm 1,1$	
In	/8/	568 <u>+</u> 20		22,3 + 1,2	
In	/8/	593 + 20		$2I_{4} \pm \overline{I_{1}I}$	
Sn	/8/	1063 ± 40		$38,4 \pm 2,0$	
Sb	/8/	823 ± 30		29,3 + I,5	
-	/8/	693 <u>+</u> 20	· · · · · · · · · · · · · · · · · · ·	25,0 + I,3	
l le	/4/	753 <u>+</u> 40		29,3 <u>+</u> 2,I	
0	/8/	I373 ± 20		57,5 ± 1,5	
HU	/4/	I403 ± 30		58,5 ± I,5	
	/8/	293 ± 5	·······	$II,6 \pm 0,6$	
Ha	/8/	293 ± 5		I0,6 <u>+</u> 0,5	
l ····	/4/	308 ± 15		I2,0 ± 0,8	
	/8/	603 <u>+</u> 20		$23,7 \pm 1,0$	
	/8/	623 ± 20		24,7 ± 1,3	
10	/8/	628 ± 20		$22,6 \pm 1,I$	
	/4/	6I3 ± 20		24,2 ± 1,0	
	/8/	903 ± 40		35,6 ± 1,7	
PЬ	/8/	783 ± 50		28,I <u>+</u> I,4	
	/4/	833 ± 60		32,5 <u>+</u> 3,0	
	/8/	873 ± 50		34.5 ± 1.7	
Bi	/8/	773 ± 50		27,5 ± 1,4	
	/4/	833 + 60		32,5 + 3,0	
	/8/	563 ± 5		22.1 ± 1.0	
Po	/8/	503 ± 5		I8,0 <u>+</u> 0,9	
	/4/	523 <u>+</u> 20		21.0 <u>+</u> 1.0	
	ł				

значительно ниже первых двух. Теплоты адсорбции ртути в системах SiO₂/H₂ и Ni/H₂ практически совпадают, а в случае таллия обнаруживаются сравнимые величины. Значения теплот адсорбции других элементов на металлах больше, чем на кварце. Это различие происходит, по-видимому, за счет вклада энергии связи между адсорбированными атомами и атомами адсорбента (металла), а также разного химического состояния адсорбированных частиц.

Можно утверждать, что в системе SiO₂/H₂ элементы Hg, Po, Tl, Pb и Bi транспортируются и осаждаются

Таблица 2

Значения теплот адсорбции некоторых элементов на меди и никеле, вычисленные по уравнению (1) на основании экспериментальных данных о температурах осаждения

Матернал колонки	Cw		Ni		
Газ-но- ситель	H2		Н2		
Элемент	Температура осаж- дения [⁰ %]	Теплота адсорб- цин [ккал/моль]	Температура осаж- дения[СК]	Теплота адсорб- ции [ккал/моль]	
Zn	1070 <u>+</u> 40	49,5 <u>+</u> I,9	958 <u>+</u> 40	44,3 <u>+</u> 2,I	
Ga	935 <u>+</u> 40	43,I <u>+</u> I,9	1193 <u>+</u> 20	55,8 <u>+</u> I,0	
Ge	-	-	92 3<u>+</u>5 0	42,7+2,6	
As	-	-	1073 <u>+</u> 50	49,9 <u>+</u> 2,6	
Se	-	-	1083 <u>+</u> 70	50,0 <u>+</u> 3,6	
Cđ	680 <u>+</u> 40	3 I,5<u>+</u>I, 9	598 <u>+</u> 50	27,8 <u>+</u> 2,6	
In	600 <u>+</u> 30	28,I <u>+</u> I,5	553 <u>+</u> 30	25,9 <u>+</u> I,5	
Hg	-	-	297 <u>+</u> 5	13,6 <u>+</u> 0,3	
ΤĒ	503 <u>+</u> 10	23,5 <u>+</u> 0,5	493 <u>+</u> 20	22,6 <u>+</u> I,3	
РЬ	950 <u>+</u> 20	44,0 <u>+</u> I,0	983 <u>+</u> 20	45,6 <u>+</u> I,0	
Ві	1105 <u>+</u> 30	51,3 <u>+</u> 1,5	1073 <u>+</u> 20	50,0 <u>+</u> I,0	
P٥	823 <u>+</u> 20	38,I <u>+</u> I,0	943 <u>+</u> 50	43,5 <u>+</u> 2,6	
		I		1 t	

Таблица З

Значения теплот адсорбции некоторых элементов-продуктов ядерных реакций на меди и никеле, вычисленные по уравнению (2)

Материал колонки	Cu		٨	/i
Газ-но- ситель	H ₂		H ₂	
Значение энер- гчи связи: I/2 (М-М)	(3)	(4)	(3)	(4)
Элемент	Теплота адсорбции - ФН ^о [ккал]			
Zn Ga Ge As Se Cd In Hg TC Pb Bi Po	II,0I 24,8I 39,46 52,46 51,53 8,65 I9,65 7,60 I3,96 I8,46 30,23 28,76	27,78 41,58 56,23 69,23 68,27 25,42 36,42 24,40 30,73 35,23 47,00 45,53	12,70 26,50 41,20 54,23 53,20 10,42 21,42 9,40 15,70 20,20 32,00 30,50	3I,78 45,58 50,23 73,23 72,27 29,42 40,42 28,40 34,73 39,32 5I,00 49,53

в элементарном состоянии $^{/4,8,9/}$. Указаний на образование легколетучих гидридов в данном случае нет. Термодинамические оценки не исключают в условиях опыта (в системе SiO₂/H₂) образования низших (в основном легколетучих) моноокислов: Sb, Sn, As, Ge,, In, Cd и Zn.

В системах Ni/H₂ и Cu/H₂ следует учитывать два фактора, которые могут повлиять на химическое состояние адсорбированных компонентов.

1. Адсорбция водорода на обоих металлах происходит в атомарном состоянии. Из-за повышенной концентрации атомарного водорода на поверхности металла вероятность образования летучих гидридов изучаемых элементов выше, чем в системе SiO₂/H₂.

2. Восстановление окисей разделяемых элементов водородом на поверхности Си или Ni облегчается в том случае, если между атомами адсорбата и адсорбента проявляется более сильное, специфическое взаимодействие, аналогичное интерметаллическим связям в макросистеме. Таким образом, в системах Ni/H₂ и Cu/H₂ вероятность существования моноокисей меньше, чем в системе SiO₂/H₂.

Результаты экспериментов позволяют сделать некоторые выводы о возможности протекания указанных процессов.

Образование легколетучих гидридов привело бы к перемещению зоны адсорбции в более низкотемпературную зону. Однако этого не наблюдается. Напротив, в системе ${\rm SiO}_2/{\rm H}_2$ элементы, образование гидридов для которых наиболее вероятно ((Ge, As, Se, Po), осаждаются при гораздо более высоких температурах, чем можно ожидать для соответствующих гидридов. Осаждение Ge, As, Ga и In происходит на поверхности меди и никеля при более высоких температурах по сравнению с ${\rm SiO}_2$, что указывает на сильное взаимодействие между атомами названных элементов и поверхностью металлов-адсорбентов. Существование упоминавшихся низших окислов в системах с повышенной концентрацией атомарного водорода практически исключено.

Таким образом, результаты описанных экспериментов дают основание рассматривать теплоту адсорбции как проявление взаимодействия между свободными атомами и поверхностью металла и оценивать ее по уравнению (2).

Значения теплот адсорбции, полученные на основе термохроматографических экспериментов, и оценки ΔH_a^0 , определенные по уравнению (2), довольно сильно отличаются. Однако при их сравнении в большинстве случаев обнаруживается корреляция. Следует подчеркнуть, что применение уравнения (2) позволяет заведомо получить лишь очень грубые оценки ΔH_a^0 , и найденные значения теплот адсорбции по уравнению (1) являются, конечно, более "истинными".

В заключение дадим характеристику вероятного адсорбционного поведения гипотетических элементов 112-118 в термохроматографических колонках. Ориентировочные значения – ΔH_a^0 этих элементов представлены в табл. 4. Значения теплот адсорбции на кварце вычислены по уравнению (1) по предсказанным температурам осаждения /4/,а на никеле и меди оценены по уравнению (2). Стандартные теплоты диссоциации элементов 112-118 определены путем экстраполяции /7/.

Таблица 4 Оценки значений – АН_а⁰ [ккал/моль] гипотетических элементов 112-118 на кварце, никеле и меди

Материал колонки	Si O ₂	Ni		Cu	
Газ-110- ситель	H ₂	H ₂		^{II} 2	
Метоц оп- рецеления	y p. (I)	¥p.(2)		y p. (2)	
Метоц оцен- ки энергии связи; I/2 (М-11)		(3)	(4)	(3)	(4)
Элемснт 112	4,2 ± 1,9	9	28	7	24
113 114 115	$17,8 \pm 2,4$ $12,5 \pm 2,5$ $24,2 \pm 2,1$	12 12 18	31 31 37	10 10 16	27 27 33
II6 II7 II8	$ I3,4 \pm 3,7 \\ I3,4 \pm 1,9 \\ 4,2 \pm 1,9 $	20 14 -	40 33 -	19 12 -	36 29 ~

На основе представленных в табл. 4 данных можно приблизительно оценить экспериментальные параметры, необходимые для транспорта названных элементов в колонке из кварца, меди или никеля в атмосфере водорода. Кроме того, можно оценить возможность термохроматографического фракционирования продуктов ядерных реакций, начальную температуру улетучивания с поверхности сборников, мишеней или подложек измеряемых образцов.

Авторы считают своим приятным долгом поблагодарить академика Г.Н.Флерова за интерес к работе и члена-корреспондента АН ЧССР И.Звару за ценные замечания, сделанные при обсуждении рукописи.

ЛИТЕРАТУРА

- 1. I.Zvara. Preprint JINR, El2-7547, Dubna, 1973. Presented at the Congress of IUPAC,
- 2. G.Herrman, H.O.Denschlag.Ann.Rev.Nucl. Sci., 19, 1 (1969).
- H.-L.Ravn, S.Sundell, L.Westguard. Proc. 8th Conf. on Low En.Ion.Accel. and Mass Separators, Skövde, Sweden, 12, June, 1973.
- 4. Б.Айхлер. Препринт ОИЯИ, Р12-7767, Дубна, 1974.
- 5. Б.Айхлер, И.Звара. Сообщение ОИЯИ, Р12-8943, Дубна, 1975.
- 6. Б.Айхлер, В.А.Доманов, И.Звара. Сообщение ОИЯИ, P12-9454, Дубна, 1976.
- 7. B.Eichler. Kernenergie (in press), 1976.
- 8. Б.Айхлер. Препринт ОИЯИ, Р12-6662, Дубна, 1972.
- 9. B. Eichler. J. Inorg. Nucl. Chem., 35, 4001
- Б.Айхлер, В.П.Доманов. Препринт ОИЯИ, Р12-7428, Дубна, 1974.
- 11. М.Х.Карапетьянц. Основные термодинамические константы. М., Химия, 1968.
- 12. L.D. Eley. Disc. Farad. Soc., 8, 34(1950).
- 13. Л.В.Гуревич. и др. Энергии разрыва химических связей, потенциалы ионизации и средство к электрону. М., Наука, 1974.

Рукопись поступила в издательский отдел 19 августа 1976 года,

11