

ОБЪЕДИНЕННЫЙ ИНСТИТУТ Ядерных Исследований

Дубна

P11-99-159

1999

И.В.Амирханов, Е.В.Земляная, И.В.Пузынин, Т.П.Пузынина, Т.А.Стриж

ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ РЕЛЯТИВИСТСКИХ УРАВНЕНИЙ НА СВЯЗАННЫЕ СОСТОЯНИЯ С КУЛОНОВСКИМ И ЛИНЕЙНЫМ ПОТЕНЦИАЛАМИ*

Направлено в журнал «Математическое моделирование»

*Работа выполнена при финансовой поддержке РФФИ (код проекта 97-01-01040)

1. Введение

Численный анализ ряда релятивистских потенциальных моделей (см., в частности, [1]-[3]) сводится к решению задач на собственные значения для интегральных уравнений в импульсном пространстве. Одна из трудностей исследования таких задач связана с тем, что в качестве эффективного потенциала в указанных моделях, по аналогии с нерелятивистским подходом [4], обычно используется комбинация кулоновского V_C и линейно растущего V_L потенциалов:

$$V_C(|\vec{p} - \vec{q}|) = -\alpha \frac{4\pi}{|\vec{p} - \vec{q}|^2}, \quad \alpha > 0,$$
(1)

$$V_L(|\vec{p} - \vec{q}|) = -\sigma \frac{8\pi}{|\vec{p} - \vec{q}|^4}, \quad \sigma > 0,$$
(2)

что приводит к расходимостям в ядрах интегральных уравнений при $\vec{p} = \vec{q}$ и $\vec{p} \to \infty$. В ряде работ (в частности, [1]) расходимость интегралов устраняется за счет дополнительно введенных в исходные уравнения контрчленов (т.н. перенормировка).

Другой подход предполагает модификацию эффективного потенциала на уровне координатного представления путем его анпроксимации некоторыми элементарными функциями. Исследование свойств ряда таких анпроксимирующих потенциалов проведено в работе [5].

В некоторых случаях расходимость под интегралом удается убрать с помощью специального преобразования исходных уравнений. В частности, такой подход рассматривается в работе [6] применительно к определенному классу задач. В работах [7] и [8] используется другой способ преобразования исходных уравнений для численного исследования КХД-инспирированной модели кваркония.

В настоящей работе исследуется обобщение разработанных в [8] и [5] приемов на случай т.н. запаздывающего взаимодействия. При этом потенциалы (1) и (2) принимают соответственно вид

$$V_C(|\vec{p} - \vec{q}|) = -\alpha \frac{4\pi}{|\vec{p} - \vec{q}|^2 - (E_p - E_q)^2},$$
(3)

$$V_L(|\vec{p} - \vec{q}|) = -\sigma \frac{8\pi}{(|\vec{p} - \vec{q}|^2 - (E_p - E_q)^2)^2},$$
(4)

где $E_p = \sqrt{p^2 + m^2}, E_q = \sqrt{q^2 + m^2}, m$ – масса (параметр модели).

Переход от потенциалов (1), (2) к (3), (4) означает на уровне координатного представления переход к нелокальному взаимодействию, т.е. исходные дифференциальные уравнения в координатном пространстве становятся интегродифференциальными. Это сильно усложняет интуитивное представление о свойствах спектральной задачи с такими потенциалами.

В начестве примера мы будем рассматривать следующее релятивистское уравнение [9], [10]:

$$[Q(p) - E_{nl}^{(\beta)}]\phi_{nl}^{(\beta)}(p) - \int_{0}^{\infty} dq V_{l}^{(\beta)}(p,q)\phi_{nl}^{(\beta)}(q) = 0, \qquad (5)$$

где

$$Q(p) = 2(E_p - m),$$
 (6)

$$V_l^{(\beta)}(p,q) = \int_{-1}^{+1} dx V^{(\beta)}(p,q,x) P_l(x), \tag{7}$$

с условием нормировки

$$\int_{0}^{\infty} (\phi_{nl}^{(\beta)}(p))^2 dp = 1.$$
 (8)

Здесь n = 0, 1, 2, ... (число нулей собственной функции), m – параметр (масса), $l = 0, 1, 2, ..., P_l$ – полиномы Лежандра, $\beta = 1, 2, 3, 4$ соответствует четырем указанным выше типам взаимодействия (1), (2), (3), (4).

Отметим, что целый ряд релятивистских обобщений уравнения Шредингера отличается от задачи (5), (6) только видом функции Q(p) [3].

Нерелятивистский случай, который будет использоваться для сравнения и тестирования, соответствует функции

$$Q(p) = \frac{p^2}{m} \tag{9}$$

в задаче (5), (7), (8).

В дальнейшем мы будем обозначать решения нерелятивистского уравнения (5), (9) индексом NR. Решения релятивистского уравнения (5), (6) будут обозначаться R при $\beta = 1,2$ и RT при $\beta = 3,4$.

В следующих двух разделах представлены постановка задачи и методы численного анализа уравнения (5) с кулоновским и линейным потенциалами. В последнем разделе обсуждаются некоторые свойства спектра рассматриваемого уравнения с учетом релятивистских эффектов. Демонстрируются соответствующие численные результаты.

Для расчетов использовались вычислительные схемы и программы, разработанные на основе непрерывного аналога метода Ньютона [11].

2. Кулоновский потенциал

Для кулоновских потенциалов (1) и (3) выражение (7) может быть записано в следующей форме:

$$V_l^{(1)}(p,q) = \frac{\alpha}{2\pi} \int_{-1}^{+1} dt \frac{P_l(t)}{y-t}, \quad y = \frac{p^2 + q^2}{2pq},$$
 (10)

$$V_l^{(3)}(p,q) = \frac{\alpha}{2\pi} \int_{-1}^{+1} dt \frac{P_l(t)}{y-t}, \ y = \frac{p^2 + q^2 - (E_p - E_q)^2}{2pq}.$$
 (11)

Отметим, что численное решение нерелятивистского уравнения (5), (9) с кулоновским потенциалом (10) не представляет принципиальных трудностей, связанных с сингулярностью ядра интеграла. Однако при решении других уравнений в рамках КХД, в частности уравнения Швингера - Дайсона [1, 2], использование кулоновского потенциала приводит к неустранимым расходимостям в этих уравнениях.

В частном случае l = 0 формулы (10), (11) можно представить в виде

$$V_0^{(1)}(p,q) = \frac{\alpha}{\pi} \ln |\frac{p+q}{p-q}|, \qquad (12)$$

$$V_0^{(3)}(p,q) = V_0^{(1)}(p,q) + \bar{V}_0^{(3)}(p,q), \tag{13}$$

где

$$\tilde{V}_0^{(3)}(p,q) = \frac{\alpha}{2\pi} \ln \left| \frac{E_p E_q + m^2 + pq}{E_p E_q + m^2 - pq} \right|.$$
(14)

В нерелятивистском случае в работе [7] для устранения особой точки (при p = q) уравнение (5) преобразовывалось следующим образом [7]:

$$[Q(p) - E_{n0}]\phi_{n0}(p) - \frac{\alpha}{\pi} \int_{0}^{\infty} dq \ln |\frac{p+q}{p-q}|(\phi_{n0}(q) - \phi_{n0}(p)) + -\frac{\alpha}{\pi} \phi_{n0}(p)I_2(p) = 0,$$
(15)

$$I_{2}(p) = \int_{0}^{\infty} dq \ln |\frac{p+q}{p-q}|.$$
 (16)

При переходе от полубесконечного интервала интегрирования $[0,\infty)$ к конечному отрезку $[0,P_M]$ интеграл (16) вычисляется аналитически:

$$I_2(p) = (P_M + p)\ln(P_M + p) - (P_M - p)\ln(P_M - p) - 2p\ln p$$

и решение задачи (15) на конечном интервале $[0, P_m]$ при $P_M \to \infty$ сходится к решению исходной сингулярной задачи. Такой прием применялся нами для численного анализа уравнений Швингера - Дайсона и Бете - Солпитера в работе [8].

Однако использование аналогичного подхода для решения релятивистской задачи (5), (6) приводит к тому, что, наряду с существованием решения для каждого фиксированного P_M , стабилизация решения при $P_M \to \infty$ для потенциала (1) происходит очень медленно, а для потенциала (3) не происходит вообще (с ростом P_M собственное значение уменьшается в абсолютном значении и начиная с некоторого значения меняет знак, т.е. решение перестает существовать). Зависимость собственных значений E_{00}^R (потенциал (13)) от P_M представлена в таблице 1. Для сравнения даны также вычисленные по той же программе собственные значения E_{00}^{NR} нерелятивистского уравнения

(5), (9), (12), демонстрирующие сходимость к аналитическому значению $E^*_{00}(m) = -15, m = 15$ при $P_M \to \infty$.

Габлица 1.
$$m = 15, \alpha = 2, n = 0, l = 0$$

P_M	E^{R}_{00}	E_{00}^{RT}	E_{00}^{NR}
50	-19,52	-17,75	-14,21
100	-27,44	-20,47	-14,86
200	-33,59	-18,83	-14,98
300	-48,92	-14,02	-14,99
400	-58,15	-8,25	-15,00
500	-67,05	-1,92	-15,00

Вопрос существования решений уравнения (5), (6) с потенциалами (1), (3) тесно связан с поведением потенциалов $V_0^{(1)}(p,q)$ и $V_0^{(3)}(p,q)$ при различных значениях аргументов. В частности, если p = q, то

$$\lim_{p \to \infty} V_0^{(3)}(p,p) = \frac{\alpha}{2\pi} \ln(\frac{p^2 + m^2}{m^2}) \to \infty.$$
(17)

При фиксированном значении $q = \bar{q}$ имеем

$$\lim_{d\to\infty} V_0^{(3)}(p,\bar{q}) = \frac{\alpha}{2\pi} \ln(\frac{(E_{\bar{q}} + \bar{q})^2}{m^2}).$$
 (18)

Из точного решения нерелятивистской задачи с кулоновским потенциалом в импульсном представлении следует

$$\lim_{p \to \infty} \phi_{n0}^{NR}(p) = \frac{1}{p^3},$$
(19)

$$\lim_{p \to \infty} [Q - E_{n0}^{NR}] \phi_{n0}^{NR}(p) = \frac{1}{p},$$
(20)

$$\lim_{p \to \infty} \int V_0^{(1)}(p,q) \phi_{n0}^{NR}(q) dq = \frac{1}{p}.$$
 (21)

В случае существования решения уравнения (5), (6) с потенциалом (1), при выполнении условия (21), в пределе $p \to \infty$ получаем

$$\phi_{n0}^R(p) \to \frac{1}{p^2}.$$
 (22)

Это означает, что ϕ_{n0}^R затухает существенно медленнее, чем собственная функция нерелятивистского уравнения, что и подтверждается расчетами.

С другой стороны, предполагая существование решения задачи (5), (6) с потенциалом (3), имеем

$$\lim_{p \to \infty} \int_0^\infty V_0^{(3)}(p,q) \phi_{n0}^{RT}(q) dq = C_1,$$
(23)

где

$$C_1 = \frac{\alpha}{2\pi} \int_0^\infty \ln[\frac{(E_q + q)}{m}]^2 \phi_{n0}^{RT}(q) dq.$$
(24)

Тогда асимптотическое поведение решения должно иметь вид

$$\lim_{p \to \infty} \phi_{n0}^{RT}(p) = \frac{C_1}{p}.$$
(25)

Однако при этом мы получаем $C_1 = \infty$, что указывает на отсутствие решения задачи (5), (6) с потенциалом (3).

Отметим также, что при численном решении интегральный член уравнения (5) обычно представляется в виде

$$\int_{0}^{\infty} V_{0}^{(3)}(p,q)\phi_{n0}^{RT}(q)dq = I_{1}(p) + I_{2}(p),$$
(26)

где

$$I_1(p) = \int_0^{P_M} V_0^{(3)}(p,q) \phi_{n0}^{RT}(q) dq, \qquad (27)$$

$$I_2(p) = \int_{P_M}^{\infty} V_0^{(3)}(p,q) \phi_{n0}^{RT}(q) dq$$
(28)

и, далее, параметр P_M выбирается таким образом, чтобы выполнялось условие

$$I_2(p, P_{M_1}) < I_2(p, P_{M_2}) < \epsilon$$
 при $P_{M_1} > P_{M_2}$, (29)

где є – заранее заданное положительное малое число.

Из-за свойств (17), (18) и (23) условие (29) не выполняется. Из таблицы 1 видно, что при увеличении P_M стабилизации решений не происходит. Поэтому полученные численные результаты можно

интерпретировать как отсутствие решения задачи (5), (6) с потенциалом (3), хотя этот вопрос требует дальнейшего строгого теоретического исследования.

Как уже отмечалось выше, "исправить" ситуацию с расходимостями в нуле и на бесконечности можно, заменив исходный потенциал некоторой аппроксимирующей функцией. При этом правильный выбор параметров этой аппроксимирующей функции позволяет получить заданное количество состояний с известной точностью. Одна из таких модификаций, рассмотренная в [5], имеет вид

$$V_C(r) = \begin{cases} \alpha/r_1, & 0 \le r < r_1, \\ \alpha/r, & r_1 \le r \le r_2, \\ 0, & r_2 < r < \infty, \end{cases}$$
(30)

где $r_1 < r_2$ – параметры. При этом потенциал $V^{(\beta)}(p,q,x)$ в формуле (7) принимает вид

$$V^{(\beta)}(p,q,x) = V(\hat{p}^{(\beta)}) = \frac{\alpha}{\pi} \frac{pq}{(\hat{p}^{(\beta)})^2} \left[\frac{\sin \hat{p}^{(\beta)} r_1}{\hat{p}^{(\beta)} r_1} - \cos \hat{p}^{(\beta)} r_2 \right].$$
(31)

где $\beta = 1, 3,$

$$\hat{p}^{(1)} = \sqrt{p^2 + q^2 - 2pqx},\tag{32}$$

$$\hat{p}^{(3)} = \sqrt{p^2 + q^2 - 2pqx - (E_p - E_q)^2}.$$
(33)

Поскольку

$$\lim_{p \to q} V^{(\beta)}(p,q,x) = \text{const} < \infty,$$

потенциал (31) не имеет сингулярности при p = q. что делает его удобным в численном анализе. Таблица 2 подтверждает стабилизацию (хотя и медленную) собственных значений E_{n0}^R (n = 0, 1)релитивистского уравнения (5), (6) с потенциалом (31). (32) при увеличении интервала интегрирования P_M . Однако такой вариант не позволяет получить решение задачи с "запаздывающим потенциалом" (31), (33). Для сравнения в таблице даны также собственные значения E_{n0}^{NR} (n = 0, 1) нерелятивистской задачи (5), (6) с потенциалом (31), (32), позволяющие оценить точность анпроксимации кулоновского потенциала с помощью представления (31) (аналитические собственные значения $E_{00}^{NR*} = -1$, $E_{10}^{NR*} = -0, 25$ при m = 1).

Таблица За. $m = 1, \alpha = 2, l = 0, \mu_1 = 0, 01, \mu_2 = 5$

Таблица 2. $m = 1, \alpha = 2, l = 0, r_1 = 0, 01, r_2 = 20$

P _M	E^{R}_{00}	E_{10}^{R}	P_M	E_{00}^{RT}	E_{10}^{RT}	P _M	E_{00}^{NR}	E_{10}^{NR}
20	-3,247	-0,638	20	-8,053	-0,959	10	-0,997	-0,249
40	-4,949	-0,840	<u></u> _40	-55,11	-1,393	20	-0,999	-0,250
60	-6,444	-0,983	60	-109,6	-1,785	30	-0,999	-0,250
80	-7,707	-1,089	80	-165,8	-2,162	40	-1,000	-0,250
100	-8,769	-1,170	100	-222,6	-2,537	50	-1,000	-0,250
120	-9,610	-1,231	120	-279,3	-2,858	60	-1,000	-0,250
150	-9,903	-1,252	150	-367,9	-3,213	70	-1,000	-0,250

Другой способ модификации исходного потенциала, устраняющий сингулярности в нуле и на бесконечности, представляет собой комбинацию двух потенциалов Юкавы:

$$V_Y(x) = \alpha[\frac{\exp(-\mu_1 x) - \exp(-\mu_2 x)}{x}],$$
 (34)

где $\mu_1 << 1, \, \mu_2 >> 1$ - параметры.

При *l* = 0 импульсное представление потенциала (34) принимает вид

$$V_Y(p,q) = \frac{\alpha}{2\pi} \left[\ln \frac{(p+q)^2 + \mu_1^2}{(p-q)^2 + \mu_1^2} - \ln \frac{(p+q)^2 + \mu_2^2}{(p-q)^2 + \mu_2^2} \right].$$
(35)

Запаздывающее взаимодействие вводится в потенциал (35) следующим образом:

$$V_Y(p,q) = \frac{\alpha}{2\pi} \left[\ln \frac{(p+q)^2 + \mu_1^2 - \delta}{(p-q)^2 + \mu_1^2 - \delta} - \ln \frac{(p+q)^2 + \mu_2^2 - \delta}{(p-q)^2 + \mu_2^2 - \delta} \right], \quad (36)$$

где

$$\delta = (\sqrt{p^2 + m^2} - \sqrt{q^2 + m^2})^2.$$
(37)

В таблицах За,б даны собственные значения E^R и E^{RT} уравнения (5) с потенциалами (35) и (36) соответственно при разных значениях параметров μ_1, μ_2 . Как и в таблицах 1, 2, для сравнения представлены численные результаты для нерелятивистского случая.

P _M	E_{00}^R	E_{10}^{R}	P_M	E_{00}^{RT}	E_{10}^{RT}	P_M	E_{00}^{NR}	E_{10}^{NR}
10	-1.266	-0.364	50	-25,91	-1,55	10	-0,865	-0,225
20	-1.268	-0.365	100	-50,68	-2,83	20	-0,866	-0,226
30	-1,268	-0,365	200	-99,88	-5,47	30	-0,866	-0,226

Таблица 36. $m=1, \alpha=2, l=0, \mu_1=0, 001, \mu_2=10$

P _M	E_{00}^R	E_{10}^{R}	P_M	E_{00}^{RT}	E_{10}^{RT}	P_M	E_{00}^{NR}	E_{10}^{NR}
10	-1.723	-0.469	50	-44,43	-1,62	10	-1,018	-0,266
20	-1.771	-0.479	100	-89,56	-3,01	20	-1,017	-0,265
30	-1,774	-0,480	200	-179,3	-6,13	30	-1,017	-0,265

Отметим, что с указанными значениями параметров потенциал (35) является более грубым приближением к кулоновскому, в чем можно убедиться, сравнивая результаты решения нерелятивистского уравнения (5), (9). При этом, как видно из таблиц 2, 3, потенциал (35) обеспечивает более быструю "стабилизацию" решения релятивистского уравнения (5), (6) при $P_M \rightarrow \infty$ по сравнению с потенциалом (31). С другой стороны, сравнивая левые части таблиц За,6, можно заметить, что более "аккуратная" ашроксимация кулоновского потенциала комбинацией потенциалов Юкавы ($\mu_1 = 0,001, \quad \mu_2 = 10$) приводит к более медленной стабилизации собственных значений с увеличением интервала интегрирования. Как и в случае потенциала (31), для запаздывающего взаимодействия нам не удалось добиться стабилизации решений при увеличении интервала интегрирования.

3. Линейный потенциал

Для представления линейного потенциала мы будем использовать следующий подход [5]:

$$V_L(r) = \sigma \begin{cases} r, & 0 \le r < r_M \\ r_M, & r_M \le r < \infty \end{cases},$$
(38)

где r_M — параметр потенциала, который выбирается так, чтобы обеспечить вычисление нужного числа состояний. В импульсном представлении потенциал $V^{(\beta)}(p,q,x)$ в формуле (7) примет вид

$$V^{(\beta)}(p,q,x) = V(\hat{p}^{(\beta)}) + \sigma r_M (2\pi)^3 \delta(|\vec{p} - \vec{q}|), \tag{39}$$

где

$$V^{(\beta)}(\hat{p}^{(\beta)}) = -\frac{\sigma}{\pi} \frac{pq}{(\hat{p}^{(\beta)})^2} [\frac{r_M}{\hat{p}^{(\beta)}} \sin(\hat{p}^{(\beta)}r_M) - \frac{4}{(\hat{p}^{(\beta)})^2} \sin^2(\frac{\hat{p}^{(\beta)}r_M}{2})], \qquad (40)$$

 $eta=2,4;\,\hat{p}^{(2)}=\hat{p}^{(1)}$ (формула 32) и $\hat{p}^{(4)}=\hat{p}^{(3)}$ (формула 33).

В таблицах 4а-в представлены собственные значения E_{nl}^{NR} нерелятивистской задачи (5), (9), собственные значения E_{nl}^{R} релятивистской задачи (5), (6) с потенциалом (2) и собственные значения E_{nl}^{RT} релятивистской задачи (5), (6) с запаздывающим взаимодействием (4). Вычисления во всех случаях велись с использованием представленной здесь модификации линейного потенциала (38). В таблицах даны также отношения $\Gamma_{nl}^{R} = E_{nl}^{R}/E_{0l}^{R}$ и $\Gamma_{nl}^{RT} = E_{nl}^{RT}/E_{0l}^{RT}$. Для сравнения представлены аналогичные результаты из работ [5] и [6]. Везде $\sigma = 1$.

Таблица	4a.	l	=	0
---------	-----	---	---	---

m	n	E_{n0}^{NR}	E_{n0}^R	Γ^R_{n0}	E_{n0}^{RT}	Γ_{n0}^{RT}	$\Gamma^R_{n0}[5]$	$\Gamma^R_{n0}[6]$	$\Gamma_{n0}^{RT}[6]$
	0	1,367	1,350		0,409				
5	1	2,391	2,338	1,73	0,868	2,12	1,71	1,67	1,90
	2	3,228	3,133	2,32	1,323	3,24	2,28	2,18	2,73
	3	3,969	3,828	2,84	1,780	4,35	2,76	2,62	$3,\!52$
	0	1,085	1,080		0,874				
10	1	1,897	1,880	1,74	1,544	1,77			
	2	2,562	2,531	2,34	2,102	2,41			
	3	3,150	3,103	2,87	2,603	2,98			
	0	0,948	0,945		0,834				
15	1	1,658	1,649	1,74	1,465	1,76	1,74	1,72	1,79
	2	2,239	2,224	2,35	1,987	2,38	2,34	2,30	2,47
	3	2,753	2,728	2,87	2,451	2,94	2,87	2,80	3,09

Таблица 46. l = 1

m	n	E_{n1}^{NR}	E_{n1}^R	Γ_{n1}^R	E_{n1}^{RT}	Γ_{n1}^{RT}	$\Gamma^R_{n1}[5]$	$\Gamma^R_{n1}[6]$	$\Gamma_{n1}^{RT}[6]$
	0	1,966	1,936		0,635				
5	1	2,856	2,786	1,44	1,092	1,72	1,42	1,39	1,56
	2	3,630	3,515	1,82	1,549	2,44	1,82	1,71	2,09
	3	4,331	4,168	2,15	2,008	3,16	2,14	2,00	2,60
	0	1,560	1,550		1,264				
10	1	2,267	2,244	$1,\!45$	1,853	1,47	ļ		
1	2	2,881	2,842	1,83	2,373	1,88			
	3	3,437	3,382	2.18	2,851	2,26			
	0	1,363	1,358		1,202				
15	1	1,980	1,968	1,45	1,755	1,46	1,44	1,43	1,49
1	2	2,516	2,496	1,84	2,240	1,86	1,83	1,80	1,92
	3	3,003	2,974	2.19	2,682	2,23	2,17	2,13	2,33

Таблица 4в. l = 2

m	n	E_{n2}^{NR}	E_{n2}^R	Γ^R_{n2}	E_{n2}^{RT}	Γ_{n2}^{RT}	$\Gamma^R_{n2}[5]$	$\Gamma^R_{n2}[6]$	$\Gamma_{n2}^{RT}[6]$
	0	2,484	2,441		0,857				
5	1	3,292	3,205	1,31	1,314	1,53	1,30	1,27	1,41
	2	4,017	3,883	1,59	1,797	2,10	1,56	1,51	1,80
	3	4,684	4,500	1,84	2,234	2,61	1,80	1,72	2,19
	0	1,972	1,958		1,605				
10	1	2,613	2,584	1,32	2,145	1,34			-
	2	3,188	3,144	$1,\!61$	2,637	1,64	1		
	3	3,718	3,656	1,87	3,097	1,93			
	0	1,723	1,715		1,523		1		
15	1	2,283	2,268	1,31	2,025	1,33	1,32	1,31	1,45
	2	2,786	2,763	$1,\!61$	2,484	$1,\!63$	1,60	1,58	1,89
	3	3,250	3,218	1,88	2,908	1,91	1,86	1,82	2,33

Динамика изменения собственных значений E_{n0}^{NR} , E_{n0}^{R} и E_{n0}^{RT} в зависимости от массы m представлена на рис.1. С ростом mзначения E_{n0}^{RT} и E_{n0}^{R} сближаются с нерелятивистским собственным значением E_{n0}^{NR} . При малых m значение E_{n0}^{RT} , в отличие от E_{n0}^{NR} и E_{n0}^{R} , уменьшается. При этом с ростом n различия между релятивистским и нерелятивистскими собственными значениями при малых массах увеличиваются, т.е. наблюдается усиление релятивистских эффектов.

На рис.2 представлены собственные функции ϕ_{00}^{NR} , ϕ_{00}^{R} и ϕ_{00}^{RT} при разных значениях m. Отметим качественное различие в поведении этих функций. Функции ϕ_{00}^{NR} и ϕ_{00}^{R} с уменьшением m становятся более "компактными" (рис.2(а,б)), что согласуется с общеизвестными представлениями квантовой механики. Включение "запаздывания" в потенциал приводит к обратному эффекту – функция ϕ_{00}^{RT} с уменьшением m затухает медленнее (рис.2(в,г)). Это должно приводить к уменьшению энергии E_{00}^{RT} , что и подтверждается расчетами (см. табл.4 и рис.1).

Аналогичные эффекты наблюдаются для n = 1 (рис.3) и n = 2 (рис.4).

На рис.5 представлены функции ϕ_{nl}^{NR} , ϕ_{nl}^{R} и ϕ_{nl}^{RT} в зависимости от l при n = 0 и фиксированных m. Качественное поведение этих функций здесь одинаково.

Рассмотрим другой подход к решению релятивистского уравнения (5), (6) с запаздывающим взаимодействием. При l = 0 потенциалы $V_0^{(2)}$ и $V_0^{(4)}$ связаны соотношением

$$V_0^{(4)} = V_0^{(2)} \bar{V}_0^{(4)}, \tag{41}$$

$$\bar{V}_0^{(4)} = \frac{(E_p + E_q)^2}{4m^2}.$$
(42)

Используя формулу (40) для представления $V_0^{(2)}$ в (41), мы получаем новую модификацию потенциала (4). Результаты численного решения уравнения (5), (6) с потенциалом (41) представлены в таблице 5.

1 adminut = 0, m = 10									
E_{n0}^{RT}	Γ_{n0}^{RT}								
0,655									
1,146	1,75								
1,540	2,35								
1,884	2,88								
	E_{n0}^{RT} 0,655 1,146 1,540 1,884								

Таблица 5. l = 0, m = 15

Из таблицы видно, что хотя собственные значения E_{n0}^{RT} отличаются от результатов таблицы 4a, отношения Γ_{n0}^{RT} изменились мало. Отметим также, что в обеих таблицах значения Γ_{n0} близки к результатам работ [5] и [6].

Все представленные в этом разделе результаты получены при значениях параметров $P_M = 25, r_M = 10$. Для сравнения в табл.6 даны численные результаты решения нерелятивистской задачи (5), (9) для значения массы m = 1, полученные при тех же значениях параметров, и значения, представленные в [12]. Отметим, что поскольку с уменьшением m функция ϕ_{nl}^{RT} затухает медленно, при расчетах с малыми m необходимо увеличивать интервал интегрирования.

r	Габлица 6. $l=0,$	m = 1
n	E_{n0}^{NR}	$E_{n0}[12]$
0	2,33809	2,338
1	4,08787	4,088
2	5,52039	5,521
3	6,78646	6,787

Еще одна возможность решения уравнений в импульсном пространстве с линейным потенциалом состоит в следующем. Пользуясь тождеством

$$\frac{1}{|\vec{p} - \vec{q}|^4} = \frac{1}{6} \Delta_p \frac{1}{|\vec{p} - \vec{q}|^2},\tag{43}$$

можно выразить линейный потенциал через кулоновский, для представления которого, в случае l = 0, используется формула (12). Такой прием применялся в работе [8] при численном исследовании КХД-инспирированной модели кваркония.

4. О некоторых особенностях спектра релятивистского уравнения (5), (6) с потенциалами (1)-(4)

С физической точки зрения представляет интерес сравнительный анализ собственных функций $\phi_{nl}^{(\beta)}$ и собственных значений $E_{nl}^{(\beta)}$ для потенциалов (1), (2) и (3), (4), т.е. выяснение влияния релятивистских эффектов и эффектов запаздывания, а также изучение зависимости решений от физических и математических параметров.

Поскольку динамика спектра уравнения (5), (6) существенно зависит от типа потенциала, мы будем анализировать каждый потенциал отдельно.

Отметим, что все приводимые рассуждения сделаны в предположении, что решение исходной задачи существует.

Кулоновский потенциал.

Замечательным свойством уравнения (5) с потенциалами (1) и (3) является тот факт, что после масштабного преобразования

$$\hat{p} = \frac{p}{m}, \quad \hat{E}_{nl} = \frac{E_{nl}}{m} \tag{44}$$

уравнение (5) в новых переменных явно не содержит параметр m. Благодаря этому свойству собственные значения для двух значений массы m_1 и m_2 связаны соотношением

$$\frac{E_{nl}(m_1)}{E_{nl}(m_2)} = \frac{m_1}{m_2}.$$
(45)

Таким образом, достаточно решить данное уравнение только для одного значения параметра *m*. Собственные значения для других значений *m* определяются из соотношения (45).

Отметим, что указанное свойство справедливо как для релятивистской задачи (6), так и для нерелятивистского случая (9).

При приближенном решении задачи (5) все параметры аппроксимации необходимо подбирать так, чтобы свойство (45) не нарушалось.

Предполагая существование $\{E_{nl}^{R}, \phi_{nl}^{R}(x)\}$ и $\{E_{nl}^{RT}, \phi_{nl}^{RT}(x)\}$, не трудно получить связь между этими решениями и решением нерелятивистской задачи. Ограничимся рассмотрением случая l = 0. Для того, чтобы оперировать с положительными величинами, введем обозначения: $\tilde{E}_{nl}^{NR} = -E_{nl}^{NR} > 0$, $\tilde{E}_{nl}^{R} = -E_{nl}^{R} > 0$, $\tilde{E}_{nl}^{R} = -E_{nl}^{R} > 0$, $\tilde{E}_{nl}^{R} = -E_{nl}^{R} > 0$. Тогда

$$\tilde{E}_{n0}^{R} = \tilde{E}_{n0}^{NR} + \Delta E_{1n}^{R}, \tag{46}$$

где

$$\Delta E_{1n}^{R} = \frac{\int dp Q_{12}(p) \phi_{n0}^{NR}(p) \phi_{n0}^{R}(p)}{\int dp \phi_{n0}^{NR}(p) \phi_{n0}^{R}(p)},\tag{47}$$

$$Q_{12}(p) = \frac{p^4}{m(E_p + m)^2}.$$
(48)

Очевидно, что $\Delta E_{1n}^R > 0$ при n = 0. Это означает, что собственные значения релятивистского уравнения лежат ниже, чем нерелятивистские собственные значения, что подтверждается численно для модифицированных потенциалов, аппроксимирующих кулоновский. Аналогично

$$\tilde{E}_{n0}^{RT} = \tilde{E}_{n0}^{NR} + \Delta E_{1n}^{RT} + \Delta E_{2n}^{RT},$$
(49)

где

$$\Delta E_{1n}^{RT} = \frac{\int dp Q_{12}(p) \phi_{n0}^{NR}(p) \phi_{n0}^{RI}(p)}{\int dp \phi_{n0}^{NR}(p) \phi_{n0}^{RT}(p)},$$
(50)

$$\Delta E_{2n}^{RT} = \frac{\int \int dq dp V_0^{(3)}(p,q) \phi_{n0}^{NR}(p) \phi_{n0}^{RT}(q)}{\int dp \phi_{n0}^{NR}(p) \phi_{n0}^{RT}(p)}.$$
(51)

Величины ΔE_{1n}^{RT} и ΔE_{2n}^{RT} положительны при n = 0. Поэтому $\tilde{E}_{n0}^{RT} > \tilde{E}_{n0}^{NR}$.

С другой стороны, можно оценить, как изменится спектр релятивистского уравнения при включении запаздывающего взаимодействия. Действительно,

$$\tilde{E}_{n0}^{RT} = \tilde{E}_{n0}^{R} + \Delta E_{1n}^{RTR},$$
 (52)

где

$$\Delta E_{1n}^{RTR} = \frac{\int \int dq dp V_0^{(3)}(p,q) \phi_{n0}^R(p) \phi_{n0}^{RT}(q)}{\int dp \phi_{n0}^R(p) \phi_{n0}^{RT}(p)}.$$
(53)

Так как $\Delta E_{1n}^{RTR} > 0$ при n = 0, $\tilde{E}_{n0}^{RT} > \tilde{E}_{n0}^{R}$.

Приведенные для потенциала (3) оценки остаются чисто теоретическими, поскольку нам не удалось найти модифицированный потенциал, удовлетворительно аппроксимирующий (3). Однако они могут оказаться полезными в дальнейшем исследовании.

Линейно растуший потенциал.

Для этого потенциала масштабным преобразованием не удается исключить параметр m из уравнения, поэтому вместо соотношения (45) получается более сложное выражение, позволяющее оценить сдвиг спектра в зависимости от параметра m. Для нерелятивистского и релятивистского уравнений без запаздывания такие оценки сделаны в [5]. В частности, для потенциала (2) мы имеем [5]

$$E_{nl}^{R}(m_{2}) = E_{nl}^{R}(m_{1}) - 2(m_{2} - m_{1})\Delta E_{nl}^{R},$$
(54)

где

$$\Delta E_{nl}^{R} = \frac{\int dp Q_{2}(p) \phi_{nl}^{R}(p, m_{1}) \phi_{nl}^{R}(p, m_{2})}{\int dp \phi_{nl}^{R}(p, m_{1}) \phi_{nl}^{R}(p, m_{2})},$$
(55)

$$Q_2(p) = 1 - \frac{m_1 + m_2}{\sqrt{p^2 + m_1^2} + \sqrt{p^2 + m_2^2}} \ge 0.$$
(56)

Равенство, аналогичное (54), для потенциала (4) в случае l = 0имеет вид

$$E_{n0}^{RT}(m_2) = E_{n0}^{RT}(m_1) - 2(m_2 - m_1)(\Delta E_{n0}^1 - \Delta E_{n0}^2), \quad (57)$$

где

$$\Delta E_{n0}^{1} = \frac{\int dp Q_{2}(p) \phi_{n0}^{RT}(p, m_{1}) \phi_{n0}^{RT}(p, m_{2})}{\int dp \phi_{n0}^{RT}(p, m_{1}) \phi_{n0}^{RT}(p, m_{2})},$$
(58)

$$\Delta E_{n0}^{2} = \frac{\int \int dp dq V_{0}^{(2)}(p,q) \Delta V_{0}^{(4)}(p,q) \phi_{n0}^{RT}(p,m_{1}) \phi_{n0}^{RT}(p,m_{2})}{\int dp \phi_{n0}^{RT}(p,m_{1}) \phi_{n0}^{RT}(p,m_{2})}, \quad (59)$$

$$\Delta V_{0}^{(4)} = \frac{(m_{1}+m_{2})}{8m_{1}^{2}m_{2}^{2}} [(p^{2}+q^{2}) + \frac{(m_{1}+m_{2})p^{2}q^{2}+m_{1}^{2}(p^{2}+q^{2})}{m_{1}^{2}\sqrt{p^{2}+m_{2}^{2}}\sqrt{q^{2}+m_{2}^{2}} + m_{2}^{2}\sqrt{p^{2}+m_{1}^{2}}\sqrt{q^{2}+m_{1}^{2}}}. \quad (60)$$

При n = 0 обе поправки ΔE_{00}^1 и ΔE_{00}^2 положительны, что объясняет поведение E_{00}^{RT} при малых массах m (см. табл.4а-в и рис.1).

Связь собственных значений релятивистского и нерелятивистского уравнений для потенциала (2) определяется равенством

$$E_{n0}^{R} = E_{n0}^{NR} + \Delta E_{1n}^{R}, \tag{61}$$

где ΔE_{1n}^R вычисляется по формулам (47) и (48). Очевидно, что при $n = 0 \ \Delta E_{0n}^R > 0$, т.е. $E_{00}^R < E_{00}^{NR}$.

Оценка, аналогичная (52), в случае потенциалов (2), (4) имеет вид

$$E_{n0}^{RT} = E_{n0}^{R} - \Delta E_{1n}^{RTR}, \tag{62}$$

где

$$\Delta E_{1n}^{RTR} = \frac{\int \int dq dp V_0^{(2)}(p,q) [\bar{V}_0^{(4)}(p,q) - 1] \phi_{n0}^R(p) \phi_{n0}^{RT}(q)}{\int dp \phi_{n0}^R(p) \phi_{n0}^{RT}(p)}, \quad (63)$$

$$\tilde{V}_0^{(4)} = \frac{(E_p + E_q)^2}{2m^2} \ge 1,$$

откуда следует, что $\Delta E_{1n}^{RTR} > 0$ и $E_{n0}^{RT} < E_{n0}^{R}$.

Приведенные соотношения являются полезными для контроля численных результатов и позволяют предсказывать, как изменятся собственные значения в зависимости от типа потенциала, что подтверждается представленными выше численными результатами.

5. Заключение

В работе рассматриваются некоторые проблемы численного исследования задач на собственные значения в импульсном представлении с кулоновским и линейным потенциалами. Сделан анализ динамики спектра в зависимости от параметров на примере одного релятивистского уравнения. Получены численные результаты, демонстрирующие влияние релятивистских эффектов и эффектов запаздывания взаимодействия на изменение спектра. В частности, установлено, что для запаздывающего взаимодействия поведение спектра резко отличается от релятивистского и нерелятивистского случаев.

Авторы искренне признательны проф. Е.П. Жидкову за внимание к работе и полезные замечания, а также А.И. Мачавариани, который обратил наше внимание на затронутые здесь проблемы.

Работа выполнена при финансовой поддержке РФФИ (код проекта 97-01-01040).

Список литературы

 S.L.Adler and A.C.Davis, Nucl.Phys. B244, 469 (1984); A.Koĉic, Phys. Rev. D33, 1785 (1986); R.Alkofer and P.A.Amundsen, Nucl. Phys. B306, 305 (1988); D.W.McKay, H.J.Munczek and Bing-Lin Young, Phys.Rev. D37, 195 (1988); A.Trzupek, Acta Physica Polonica B20, N2, 93 (1989); И.В.Амирханов, Е.В.Земляная, В.Н.Первушин, И.В.Пузынин, Т.П.Пузынина, Н.А.Сариков, Т.А.Стриж, Математическое моделирование 6, N7, 55 (1994).

- [2] A.Le Yaouanc, L.Oliver, P.Pene and J.C.Raynal, Phys.Rev. D29, 1233 (1984); Phys.Rev. D31, 137 (1985); Ю.Л.Калиновский, В.Каллис, Б.Н.Куранов, В.Н.Первушин, Н.А.Сариков, ЯФ 49, 1709 (1989); Yu.L.Kalinovsky, W.Kallies, L.Kaschluhn, L.Münchow, V.N.Pervushin and N.A.Sarikov, Fortschr. Phys. 38, 333 (1990); Few Body Systems 10, 87 (1991).
- [3] R. Blankenbecler and R. Sugar, Phys. Rev. 142, 1051 (1966);
 V. G. Kadyshevsky, Nucl. Phys. B6, 125 (1968); J.W.Norbury, D.E.Kahana and K.N.Maung, Can J.Phys. 70, 866 (1992).
- [4] А.А.Быков, И.М.Дремин, А.В.Леонидов, УФН Т.143, 3 (1984); Chikade Habe (Yoshida) et al., Prog.Th.Phys. 77, 917 (1987).
- [5] И. В. Амирханов, Е. В. Земляная, И. В. Пузынин, Т. П. Пузынина, Т. А. Стриж, Математическое моделирование 9, N10, 111 (1997).
- [6] K.H.Maung, D.E.Kahana and J.W.Norbury, Phys.Rev. D47, N3, 1183 (1993).
- [7] I.V.Puzynin, I.V.Amirkhanov, T.P.Puzynina, E.V.Zemlyanaya, JINR Rapid Comm. 5[62]-93, 63 (1993).
- [8] И. В. Амирханов, Е. В. Земляная, И. В. Пузынин, Т. П. Пузынина, Т. А. Стриж, Математическое моделирование 7, N7, 34 (1995).
- [9] R.H.Thompson, Phys.Rev. D1, 110 (1970).
- [10] F.Gross, Phys.Rev. 186, 1448 (1969); F.Gross and J.Milane, Phys.Rev. D43, 2401 (1991); Phys.Rev. D45, 969 (1992).
- [11] Т.Жанлав, И.В.Пузынин, ЖВМиМФ 32, N16, 846 (1992).
- [12] Г.Бете, Е.Е.Солпитер. Квантовая механика одного и двух электронов. Физматгиз, М, 1960; А.С.Давыдов. Квантовая механика. Наука, М, 1973.

Рукопись поступила в издательский отдел . 31 мая 1999 года.