

97-15

СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Дубна

P11-97-15

Т.А.Меркулова, Г.Г.Тахтамышев

МОДЕЛИРОВАНИЕ ЭКСПЕРИМЕНТА ПО ИЗМЕРЕНИЮ СЕЧЕНИЯ УПРУГОГО НЕЙТРОН-НЕЙТРОННОГО РАССЕЯНИЯ

1.Описание установки. Эксперимент по измерению сечения упругого рассеяния тепловых нейтронов был предложен в 1994 г. Схему планируемого эксперимента можно найти в работе [1].

В весьма упрощенном виде эта схема показана на Рис.1 в проекции на плоскость XZ. Проекция на плоскость YZ отличается только размерами. Заштрихованная область вокруг точки O представляет собой область столкновения нейтронов (зона реактора). Коллиматор обозначен буквой K, детектор — буквой D. Детектор расположен на расстоянии около 25 метров от зоны столкновения.

2.Математическая постановка задачи. В данной работе мы считаем, что сталкивающиеся нейтроны имеют максвелловское распределение по скоростям:

$$M(\vec{v})d\vec{v} = \frac{n}{(v_0\sqrt{\pi})^3}\exp(-\frac{v^2}{v_0^2})d\vec{v}.$$

Предполагается, что параметр v_0 одинаков для всех точек в зоне столкновения и плотность нейтронов n равна 1 см⁻³.

Известно (см. [1]), что число столкновений частиц в малом объеме dxdydz за интервал времени dt описывается формулой

$$d\Phi = \frac{1}{2}M(\vec{v}_1)M(\vec{v}_2)\frac{\sigma}{\pi}\delta[w_1^2 + (\vec{v}_1\vec{v}_2) - \vec{w}_1(\vec{v}_1 + \vec{v}_2)]d\vec{v}_1d\vec{v}_2d\vec{w}_1dxdydzdt.$$
 (1)

Здесь $\vec{v_1}$ и $\vec{v_2}$ — скорости сталкивающихся нейтронов, а $\vec{w_1}$ — скорость первого нейтрона после соударения. В данной работе мы считаем нейтроны различимыми. $\delta(x)$ — дельта-функция непрерывного аргумента, σ — сечение упругого рассеяния нейтронов; измерению этого параметра и посвящен предлагаемый эксперимент.

воъсаписнымя систегут Пасьяна есспедованой

Рис. 1: Схема эксперимента по измерению сечения упругого рассеяния тепловых нейтронов.

Уравнение (1) определяет распределение событий в некоторой 12-мерной области. Требуется отобрать события, в которых первый нейтрон после соударения проходит через коллиматор и достигает плоскости детектора. Для таких событий нужно построить распределение трех величин — двух координат точки пересечения траектории нейтрона с плоскостью детектора и времени регистрации нейтрона детектором. Такую функцию, описывающую распределение трех переменных, мы называем "отклик детектора".

3.Ход решения. В первую очередь нужно избавиться от дельта-функции в уравнении (1). Заменим переменную $\vec{w_1}$ на скорость этого же нейтрона в системе центра масс \vec{w}_1^* и проинтегрируем по переменной, являющейся аргументом дельта-функции. При этом исчезает дифференциал $d\vec{w}_1^*$, и фунция распределения 12-ти новых переменных приобретает следующий вид

$$d\Phi = \frac{\sigma}{8\pi} M(\vec{v}_1) M(\vec{v}_2) |\vec{v}_1 - \vec{v}_2| d\vec{v}_1 d\vec{v}_2 d\cos\theta^* d\varphi^* dx dy dz dt.$$
(2)

Здесь θ^* и φ^* — полярный и азимутальный углы вектора $\vec{w_1}$.

Поставим теперь задачу найти новый набор переменных, такой, чтобы среди них были три величины, соответствующие компонентам вектора $\vec{w_1}$. Это кажется парадоксальным — ведь мы только что избавились от этих переменных в уравнении (1). Однако, если более короткий путь к искомому набору переменных и существует, нам его найти не удалось.

На первом шаге перейдем от переменных $\vec{v_1}$ и $\vec{v_2}$ к их полусумме и полуразности

$$\vec{p} = rac{ec{v_1} + ec{v_2}}{2}$$
 , $\vec{q} = rac{ec{v_1} - ec{v_2}}{2}$

В этих переменных распределение принимает вид

$$d\Phi = A \exp\left[-\frac{2}{v_0^2}(p^2 + q^2)\right] q d\vec{p} d\vec{q} d\cos\theta^* d\varphi^* dx dy dz dt, \tag{3}$$

где $A = 2\sigma/(v_0^6 \pi^4)$.

*1

Þ

Поскольку скорость первого нейтрона в системе центра масс после соударения по модулю равна q, то уравнение (3) может быть переписано в следующем виде:

$$d\Phi = A \exp[-\frac{2}{v_0^2} (p^2 + w_1^{*2})] w_1^* d\vec{p} d\vec{w}_1^* d\cos\theta' d\varphi' dx dy dz dt.$$
(4)

Углы θ' и φ' соответствуют вектору \vec{q} . Теперь, используя очевидные соотношения

$$ec{w_1} = ec{p} + ec{w_1^*}$$
, $ec{w_2} = ec{p} - ec{w_1^*}$,

напишем функцию распределения непосредственно в переменных $ec{w_1}$ и $\vec{w_2}$ ($\vec{w_2}$ — скорость второго нейтрона после столкновения)

$$d\Phi = A_1 \exp(-\frac{w_1^2 + w_2^2}{v_0^2})(w_1^2 + w_2^2 - 2w_1w_2\cos\gamma)^{\frac{1}{2}}d\vec{w_1}d\vec{w_2}d\cos\theta'd\varphi'dxdydzdt,$$
(5)

где γ — угол между векторами $\vec{w_1}$ и $\vec{w_2}, A_1 = \sigma/(8v_0^6\pi^4)$.

Таким образом искомый набор переменных найден. Это дает возможность эффективно моделировать только те события, в которых результирующий нейтрон прошел через коллиматор и достиг плоскости детектора.

4. Моделирование событий. В уравнении (5) от переменных w₁ и w₂ перейдем к переменным ρ и ϕ . Переменные связаны следующим образом:

> $w_1 = \rho \sin \phi$, $w_2 = \rho \cos \phi$, где $0 \leq
> ho < \infty$, $0 \leq \phi < rac{\pi}{2}.$

В этих переменных функция распределения имеет вид

 $d\Phi = A_2 f_1(\rho) f_2(\phi, \gamma) d\rho d\phi d\cos\theta_1 d\phi_1 d\cos\theta_2 d\phi_2 d\cos\theta' d\varphi' dx dy dz dt,$ (6)

где

$$f_1(
ho) =
ho^6 \exp(-rac{
ho^2}{v_0^2}),$$

$$f_2(\phi,\gamma) = (1 - \sin 2\phi \cos \gamma)^{\frac{1}{2}} \sin^2 2\phi,$$

углы θ_1 и φ_1 соответствуют вектору $\vec{w_1}$, а углы θ_2 и φ_2 — вектору $\vec{w_2}$, $A_2 = \sigma/(32v_0^6\pi^4)$.

Поскольку геометрия эксперимента предусматривает использование коллиматора прямоугольного сечения, целесообразно перейти к плоским углам η_x и η_y :

$$\operatorname{tg} \eta_x = \frac{w_{1x}}{w_{1z}} , \ \operatorname{tg} \eta_y = \frac{w_{1y}}{w_{1z}}.$$

Имеют место соотношения:

$$\operatorname{tg} \eta_x = \operatorname{tg} \theta_1 \cos \varphi_1$$
, $\operatorname{tg} \eta_y = \operatorname{tg} \theta_1 \sin \varphi_1$.

Окончательно распределение имеет вид

$$d\Phi = A_2 f_1(\rho) f_2(\phi, \gamma) f_3(\eta_x, \eta_y) d\rho d\eta_x d\eta_y d\cos\theta_2 d\varphi_2 d\cos\theta' d\varphi' d\phi dx dy dz dt,$$
(7)

где

$$f_3(\eta_x, \eta_y) = \frac{(1 + \mathrm{tg}^2 \,\eta_x)(1 + \mathrm{tg}^2 \,\eta_y)}{(1 + \mathrm{tg}^2 \,\eta_x + \mathrm{tg}^2 \,\eta_y)^{\frac{3}{2}}}.$$

Моделирование событий, в которых переменные имеют распределение вида (7), осуществлялось следующим образом. Переменная ρ моделировалась в соответствии с распределением $f_1(\rho)$ (см. [2]). Остальные 11 переменных моделировались равномерно и событию приписывался вес, в котором учитывались диапазоны моделирования углов η_x и η_y , а также факторы $f_2(\phi, \gamma)$ и $f_3(\eta_x, \eta_y)$.

5.Результаты. Данный алгоритм был реализован в виде программы. Был проделан тестовый расчет с параметрами, близкими к параметрам планируемой установки. Всего было промоделировано 100000 событий. В результате была получена оценка геометрической эффективности установки $\epsilon = 1.1 \cdot 10^{-5}$. Относительная точность оценки составила 0.5%. Эти цифры показывают, что найденный алгоритм достаточно эффективен и позволяет быстро проводить расчеты, пеобходимые для планирования эксперимента.

На Рис.2,3 показаны распределения событий на плоскости детектора по осям X и Y соответственно. На Рис.4 показано распределение событий в детекторе по времени.

5

Ł

Рис. 3: Распределение событий на плоскости детектора по оси У.

Благодарности. Авторы выражают признательность Ю.Н.Покотиловскому за постановку задачи, благодарность Г.А.Ососкову за плодотворные консультации и многочисленные полезные обсуждения и Ю. А. Астахову за помощь в работе.

Авторы также благодарят руководство Лаборатории нейтронной физики за постоянное внимание к работе и предоставленный доступ к вычислительным мощностям ЛНФ.

Список литературы

- Yu.Pokotilovski et al., Proc. of the Amer. Nucl. Soc. Topical Meeting "Physics, Safety and Applications of Pulse Reactors", Nov. 13-17, 1994, Washington, DC, p.343-346.
- [2] И.М.Соболь, Численные методы Монте-Карло, М., "Наука", 1973.

Рукопись поступила в издательский отдел 23 января 1997 года.