

СООбЩЕНИЯ Объединенного института ядерных исследований дубна

P11-93-210

1

Е.П.Жидков, Т.М.Макаренко, Б.Н.Хоромский

РЕШЕНИЕ МЕТОДОМ ИТЕРАЦИЙ КВАЗИПОТЕНЦИАЛЬНОГО УРАВНЕНИЯ ДЛЯ ДВУХЧАСТИЧНОЙ СИСТЕМЫ С НЕЛИНЕЙНЫМ ВХОЖДЕНИЕМ СПЕКТРАЛЬНОГО ПАРАМЕТРА

Исследование ряда задач теоретической физики требует дальнейшей разработки численных методов решения квазипотенциальных уравнений для волновой функции системы двух частиц. В предыдущей нашей работе рассматривался класс интегральных уравнений с потенциалами взаимодействий, зависящими от полной энергии системы, являющейся в данном случае спектральным параметром задачи. Уравнения с потенциалом, обладакщим таким свойством, были получены в/2/ посредством последовательного построения ядер, описывающих взаимодействие между частицами, из матричных элементов релятивистской амплитуды рассеяния. Для решения такого рода уравнений нами был предложен метод итераций, обеспечивающий необходимую точность расчетов. В/1/ приводятся спектры значений энергий связи для интегрального уравнения с двумя видами потенциалов: нерелятивистским и релятивистским. В настоящей статье мы рассмотрим некоторые вопросы применения метода итераций к нелинейной задаче на собственные значения, к которой сводятся интересующие нас интегральные уравнения.

Нами исследовалось уравнение

 $G_0^{-1} \Psi(x) = \frac{d}{\pi} \int V_1(x, y; \mu) \Psi(y) D(y) .$

Здесь 🖌 – электродинамическая константа связи 🗠

G₀⁻¹ - обратная функция к свободной функции Грина двухчастичной системы ,

 $G_{O}^{-1} = K_{i}(x) - f'$, $K_{i}(x) - кинетическая энергия системы,$ $D(y)=C_{i}(y)dy - элемент объема интегрирования,$

м - спектральный параметр.

В релятивистском случае

 $C_1(y) = (1+y^2)^{-1}$

$$V_{1}(x,y;\mu) = \ln\left(\frac{x+y+\sqrt{1+x^{2}}+\sqrt{1+y^{2}}-\mu}{|x-y|+\sqrt{1+x^{2}}+\sqrt{1+y^{2}}-\mu}\right)$$

$$K_{1}(x) = 2\sqrt{1+x^{2}},$$

(2)

(I)

COBCASHCUHLIN HISCIETYT

В нерелятивистском случае

 $V_2(x,y;\mu) = \ln(\frac{x+y+2-f^2}{|x-y|+2-f^2})$, $K_2(x) = x^2 + 2$,

$$C_{2}(y) = 1$$

Один из способов решения уравнения (I) рассматривался авторами работн/3/ и заключался в следующем.

(3)

(4)

(5)

Пусть задано одномерное уравнение вида

 $G(x, \mu) f(x) = \lambda \int_{0}^{\beta} V(x, y; \mu) f(y) dy$

где G(x, M) и V(x, y; M) – известные функции, M – задаваемый параметр, λ – искомое собственное значение, f(y) – искомая функция. Зададим некоторую последовательность значений M. Для каждого M_i решим уравнение (4) и найдем соответствующие ему собственные значения $\lambda_n = \lambda_n (M_i)$. Рассмотрим, как изменяется собственное значение λ_i , имеющее номер i в зависимости от изменения M. Возьмем достаточно малое $\Delta f^{\mu} = M_i - M_i - i$ и отметим на графике точки $\lambda_i (M_i), \lambda_i (M^2), \cdots, \lambda_i (M_n)$. В областях немонотонной зависимости λ_i от f^{μ} , т.е. при выполнении условия

 $\begin{cases} \lambda_i (M_i) < \lambda_i (M_{i+1}) \\ \lambda_i (M_i) < \lambda_i (M_{i-1}) \end{cases}$

решим уравнение (4) для последовательности fu; такой, что

 $\Delta f l' = \frac{1}{\rho} \Delta f u'$. В нашем случае p=10. Снова найдем такие значения M_i , для которых выполняется условие (5), уменьшим значение $\Delta M' = M'_{i-1}$ в р раз и решим уравнение (4) для набора значений 14. Повторив такую последовательность действий несколько раз и соединив между собой все полученные точки //, построим кривую, изображенную на рис.І. Такую же операцию проделаем с другими собственными числами λ и получим набор функций $\lambda_n(M)$, зависящих сложным образом от M . Кривне $\lambda(M)$ имеют узкие и глубокие провалы. Пересечение этих кривых с нужным нам значением, Л. должно давать уровни \mathcal{J}_n , рассматриваемые авторами работи 3/ как резонансные состояния двухчастичной системы $e^+e^-, p^+p^+, e^-e^$ с положительной энергией связи. Однако кривне $\lambda_n(\mathcal{M})$ не достигают значения $\lambda_{0} = \lambda = \frac{1}{137}$, представляющего практический интерес при исследовании двухчастичной системы, даже если решать уравнение (4) в областях провалов при такой последовательности /4: , что $\Delta \mu = \mu_i - \mu_{i-1}$ очень мало, в нашем случае $\Delta \mu$ достигало значения $\Delta \mu = 10^{-32}$. То есть точность метода позволяет говорить только о предположительном пересечении кривых $\lambda_n(\mu)$ прямой $\lambda_o = \frac{1}{132}$ основываясь на анализе поведения функции и ее первой производной в этих критических точках. Поэтому проведение исследования уравнения (I) бодее точным методом позволило бы с большей достоверностью находить спектры значений Mn.

Для решения этой проблемы нами был предложен метод итераций. С помощью дискретизации по Галеркину^{/I,4/}интегральное уравнение (I) сводится к задаче на собственные значения

 $A(\mathcal{H})u = \mathcal{H} u ,$ $\Gamma \mathcal{H}e \quad u - Bektop Heusbecthux,$ $A(\mathcal{H}) = K(x_1) - \frac{d}{\mathcal{T}} \sum_{j=1}^{n} \int_{O} V(x_1, y; \mathcal{H})C(y) \mathcal{V}_j(y) dy ,$ $x = ih, \quad i = 1, \dots, n .$ (7)

Таким образом, *М* входит и в левую, и в правую часть выражения (6). Применение метода итераций к нелинейной задаче (6) заключалось в следуищем.

I. Выбиралось некоторое значение μ (°).

2. Для выбранного $\mu^{(o)}$ решалась задача на собственные значе: ния $A(\mu^{(o)})u = \mu^{(1)}u$.

3. Из набора полученных собственных чисел $\mu^{(1)}$ выбиралось $\mu^{(1)}_{\kappa}$

3

с учетом того факта, что искомые $\int^{\mathcal{U}}$ имеют некоторые допустимые границы, зависящие от вида потенциала.

4. $\mu_{k}^{(1)}$ подставлялось в $A(\mu)$ и решалась задача

 $A(\mu_{k}^{(1)})u = \mu^{(2)}u$,

где верхний индекс - номер итерации, нижний индекс - номер собственного числа.

 $A(\mu_{k}^{(i-1)})u = \mu^{(i)}u$

Процесс продолжался до тех пор, пока не выполнялось условие

 $| \mu_{k}^{(n)} - \mu_{k}^{(n-1)} | < \xi$, где \mathcal{E} - заранее заданное число, определяющее точность решения задачи.

О существенно более высокой эффективности метода итераций по сравнению с решением линейной однородной системы, к которой сводится уравнение (4), и исследованием поведения кривни $\lambda(\mu)$, как это делалось в⁽³⁾, говорит тот факт, что задача на собственные значения (6) решалась при уже зафиксированном значении $\mathcal{A} = \frac{1}{137}$.

Таким способом в^{/I/} были получены энергетические спектри для связанной электродинамической системы двух частиц. Высокую точность метода итераций показывают результати сравнения величин уровней энергии в случае двухчастичного уравнения Шредингера с кулоновским потенциалом, для которого известны точные решения, - и их значений, полученных численно.

Чтоби теоретически обосновать возможность применения метода итераций к решению уравнения (I), необходимо рассмотреть вопрос о его сходимости. Для этого нами были проведены численные эксперименты по исследованию поведения расстояния между элементами множеств, в качестве которых выбирались собственное значение и собственная функция задачи (6).

Если $\vec{\mu}$ и $\vec{\mu}$ – собственные числа, а $\vec{u} = (\vec{u}_1, \vec{u}_2, \dots, \vec{u}_N)$ и $\vec{u} = (\vec{u}_1, \vec{u}_2, \dots, \vec{u}_N)$ – собственные функции, то расстояние определялось следующим образом:

 $\rho(\mu;\mathbf{u}) = |\vec{\mu} - \vec{\bar{\mu}}| + \sup_{\substack{1 \le n \le N}} |\vec{u}_n - \vec{\bar{u}}_n|$

I. Решаем задачу с одним начальным приближением M° . Пусть \overline{M} – любое собственное число, например, минимальное, \overline{u} – соответствующая ему собственная функция при (n) – й итерации, а \mathcal{I} – минимальное собственное число, $\overline{\mathcal{U}}$ – соответствующая ему собственная функция при (n+1) – й итерации. Тогда формулу, по которой внчисляется расстояние в таким случае можно записать в следующем виде

 $\rho_1 = \left(\mu_i, u_i \right)^{(n)} - \left(\mu_i, u_i \right)^{(n+1)} \right| ,$

где верхний индекс - номер итерации, нижний индекс - номер собственного числа и собственной функции.

Результати расчетов представлени в таблицах № I (в нерелятивистском случае) и № 2 (в релятивистском случае), в которых приведены значения расстояния ρ_4 для нескольких процессов итераций с различными начальными приближениями M_o , расположенными в первой горизонтальной строке таблицы, в зависимости от номера итерации n (номера итераций занимают первую колонку таблицы).

<u>Таблица I</u>

	· · · · ·	and the second		
n	-0.001	-0.I	0.5	I.I
I	0.999475.10 ⁻³	0.110109	0.370010	0.750547
2	0.126512.10-4	0.101569.10 ⁻¹	0.112547	0.238207
3,	0.200687.10-6	$0.347740 \cdot 10^{-4}$	0.134855.10-1	0.123398·10 ⁻¹
j ∻ 4 ° .:	0.318417.10-8	$0.551740.10^{-6}$	$0.315862 \cdot 10^{-4}$	0.340613.10-4
5	0.505210.10-10	0.875402.10-8	0.671814.10-6	0.540435·IO ⁻⁶
6	0.801581.10-12	0.138894.10-9	0.894271·10 ⁻⁸	$0.857466 \cdot 10^{-8}$
7	0.127179.10-13	0.220373.10-11	0.112912.10-9	0.136048.10-9
8	0.127179.10-13	$0.358147 \cdot 10^{-13}$	$0.2754 II \cdot 10^{-11}$	$0.291562 \cdot 10^{-11}$

Из таблиц № I и № 2 видно, что расстояние с каждым шагом последовательно уменьшается, пока процесс итераций не сходится к решению задачи.

2. Также мы рассматривали одновременно два процесса итераций с различными начальными приближениями для нахождения одного и того же собственного числа и собственной функции. Введем следующие обозначения. \overline{M}_i - собственное число с номером i, \overline{u}_i - соответствующая ему собственная функция, полученные в результате (n) - й итерации при решении задачи с начальным приближением $\overline{M}^{(o)}$. А \overline{M}_i и \overline{u}_i - собственное число и собственная функция, также полученные в результате (n)- й итерации, но при решении задачи с начальным приближение начальным приближение в результате (n)- й итерации, но при решении задачи с начальным приближение начальным приближение в результате (n)- й итерации, но при решении задачи с начальным приближение $\overline{M}^{(o)}$.

4

5

Таблица 4

Ã.	_3	100	-100	-100
n fie	3	-3	6	100
I	0.112714.10-2	0.987135.10-1	0.100157	0.251314
2	0.174128.10-4	0.851151.10-3	0.941538.10 ⁻³	0.4II328.I0 ^{-I}
3	0.894115.10-7	$0.736514.10^{-5}$	0.851613.10 ⁻⁵	0.83II45.I0 ⁻³
4	0.751123.10 ⁻⁹	0.591627.10-7	$0.745714.10^{-7}$	$0.141837.10^{-4}$
5	0.581514.10-11	0.441883.10 ⁻⁹	0.519411.10 ⁻⁹	0.102813.10 ⁻⁶
6	0.214415.10-13	0.287187.IQ ^{-II}	0.410005.10-11	0.951744.10 ⁻⁹
7	0.214415.10-13	$0.117455.10^{-13}$	0 331735.10-13	0.7I33I8.I0 ^{-I}

Чем дальше друг от друга отстоят первоначальные приближения $\bar{\mu}_{o}$ и $\bar{\bar{\nu}_{o}}$, тем больше значение ρ_{2} для первых шагов итераций. Поэтому если заранее, до решения математической задачи, возможно провести физический анализ данных, то следует определить область, в границах которой должно находиться решение задачи, и вноирать начальное приближение из этой области.

Полученные результаты численных экспериментов показывают, что рассматриваемое нами отображение элементов множеств, в качестве которых выбирались собственные значения и собственные функции задачи, является сжимающим. Здесь приведена лишь часть полученных данных. Из таблиц видно, что коэффициент сжатия k <<1. Это означает, что исследуемое отображение удовлетворяет теореме о сжимающих отображениях.

Дальнейшим нашим шагом будет теоретическое доказательство сходимости метода итераций в применении к решению нелинейной задачи на собственные значения, к которой сводятся интегральные уравнения, применяемые при изучении спектральной задачи для двухчастичной системы.

 $\vec{\mu}^{(0)} \neq \vec{\mu}^{(0)} ,$ $\rho_{2} = |(\vec{\mu}_{1}, \vec{u}_{1})^{(n)} - (\vec{\mu}_{1}, \vec{u}_{1})^{(n)} ,$

где верхний индекс - номер итерации, нижний индекс - номер собственного числа и собственной функции.

Таблица 2

n Wo	-100	3		I00
I	102.008	0.999556	3.999557	97.9996
	0.111206.10 ⁻³	0.III474.IO ⁻³	$0.110607.10^{-3}$	$0.110941.10^{-3}$
3	0.482469.10 ⁻⁵	0.332533.10 ⁻⁵	$0.375900.10^{-5}$	0.451718.10-5
4	0.929928.10 ⁻⁷	0.641626.10-7	0.724918.10-7	0.981435.10-7
5	0.180056.10 ⁻⁸	0.124323.10 ⁻⁸	0.140463.10 ⁻⁸	0.172614.10 ⁻⁸
6	0.348853.IO ^{-IO}	$0.240882.10^{-10}$	0:272132.10-10	0.314569.10-10
7	0.675681.10-12	0.468459.10-12	0.528133.10-12	0.618514.10-12
	0.131000.10-13	$0.513318.10^{-13}$	0.611835.10-13	0.145966.10-13

Значения расстояния ρ_2 представлены в таблице 3 (для уравнения с нерелятивистским потенциалом) и ½ 4 (для релятивистского уравнения), где в первой колонке, как и прежде, приведены номера итераций n а в первых двух строках – значения начальных приближений M_o и M_o для двух процессов итераций.

Таблица З

	at a star to star star st	en e		
No.	-0.000I	-0.00I	-0001	-0.5
n n	-0.0002	-0.003	-0.5	I.05
I 5. 5	0.9330I8 IO ^{-I}	0.256152	1.051804	1.960343
2	0.62395I IO- ³	0.309873.IO ^{-I}	0.526811	0.808124
3	0.633000.10-5	0.283604.10-3	0.720686.IO ⁻²	0.490544
4	0.454010.10-7	0.105727.10-5	$0.670794.10^{-4}$	0.279452
5	0.251723.10 ⁻⁹	0.9754I6.IO-8	0.574112.10-6	0.205349.10-2
6	0.I7284I.IO-II	0.808124.10-10	0.492815.10-8	0.132144.10-4
7	0.514120.10-13	0.460I40.IO ^{-I2}	0.332337·IO ^{-IO}	0.101517·10 ⁻⁶
8	0.514120.10-13	0.112113.10-13	0.217532.10-12	0.942II5.I0 ⁻⁹
9	0.514120.10-13	0.112113.10-13	$0.101274.10^{-13}$	0.8I2045.IO ^{-II}

6

Литература

I. Грегуш М.М., Жидков Е.П., Макаренко Т.М., Скачков Н.Б., Хоромский Б.Н. ОИЯИ, PII-92-142, Дубна, 1992.

 Капшай В.Н., Саврин В.И., Скачков Н.Б. ТМФ, 69(1986), № 3, 400.
Arbusov B.A., Boos E.E., Savrin V.I. and Shichanin S.A. Phys. Lett. A, 5(1990), 1441.

 Atkinson K.E. A survey of numerical methods for the solution of Fredholm equations of the second kind (SIAM, Philadelphia, PA, 1976).

ほうか コレート なみない れいしゃ いんない しかい 構築 というため

그렇다. 그 아님의 이번 가는 학교는 작품이 나와 있을

化化学 化化学 化化学 建磷酸盐 医无关病 化化学原因 化化学 化化学 化化学

د در ۱۳ مهمتر این _{مو}انده در این این به در این در مدین میشود کرد. این میشود از این این میشود ا

Here and the second second second second

60.5 3

4. 19. Ja

α.

a second des se t

Рукопись поступила в издательский отдел 8 июня IS93 года.