

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

P11-91-344

Р. Малик

ОЦЕНКА НАДЕЖНОСТИ ЭЛЕКТРОНИКИ КАНАЛОВ АВАРИЙНОЙ ЗАЩИТЫ СУЗ ИБР-2

Аппаратурные комплексы, связанные с аварийной защитой (АЗ) ядерных реакторов, должны отвечать особенно высоким требованиям. Структурно-электронная часть АЗ входит в состав системы управления и защиты (СУЗ). В СУЗ имеется четыре независимых, параллельно действующих канала аварийной защиты. Каждый канал составляется из одинналцати функционально-специализированных модулей. Общая схема электроники одного канала АЗ и функциональные связи между модулями представлены на рисунке I. Схема на этом рисунке (сделана на основании документаци СУЗ [I]) упрощена. Для большей ясности исключены элементы и функцональные связи, необходимые только во время тестирования СУЗ. С этой же целью не обозначены обратные связи цепи контура исправности и упрощёным способом указан задатчик мощности (в виде потенциометра, подключеного к импульсному усилителю – символ 3-I). Согласно техническому описанию СУЗ, обозначения на рисунке I означают:

- З-І импульсный усилитель,
- 3-2 импульсный вольтметр,
- 3-3 триггер "исправность",
- 3-4 триггер разрешающих импульсов,
- 3-5 триггер начала работы,
- 3-6 триггер уменьшения амплитуды импульсов,
- 3-7 тригтер "предупреждение",
- З-8 триггер "авария",
- 3-9 переключатель измерительного приибора MI73I,
- 3-10 стабилизатор напражений,
- 3-II выпрямитель и источник питания.

Особым шрифтом обозначена функциональная связь между модулями 3-3 и 3-7 3-8, которая учитывается в документации, но не существует в составе каналов АЗ.

Определяя надежность электронной части АЗ, принимаем следующие, основные предположения:

 а) надёжность электронных элементов – вероятность их безотказной работы в зависимости от времени (t) изменяется по закону показательного распределения [2]:

 $r(t) = exp[-\Lambda t],$

где частота отказов A=const.

Соъсльвечный институт настряки иссуслований виблиотека /I/

Рис. І. Общая схема электроники канала аварийной защиты СУЗ ИБР-2.

б) Частота отказов электронного устройства (модуля) является суммой частот отказов составных частей (элементов) этого устройства:

$$\Lambda = \Sigma \lambda,$$

Обратить внимание нужно на важность условия б). Это условие строгое и означает, что в отказавшие модули включаются отказы и неисправности всех его элементов независимо от назначения.

Частота отказов элементов одного вида принимает различные величины в зависимости от его типа, класса и производителя.

В более точных оценках дополнительно учитываются условия работы даного элемента, то есть температура окружающей средн и нагрузка элемента. Эти условия учитывают, вводя в формулу /1/ коэфицент k:

8

/2/

10.00

Ниже указаны примерные величины коэфициента к для сопротивлений и конденсаторов.Приведенные в [7] значения соответствуют различным температурам и нагрузкам (относительно номинальной нагрузки).

Для сопротивлений:

Для конденсатор

TO	MII.	OTH	осител	ьная	нагруз	ка
OB:						
			e di se i		s ji wita	1 1 1 1
4	0	0.09	0.12	0.18	0.48	I.5
3	0	0.09	0.II	0.15	0.40	1.2
2	0	0.08	0.10	0.13	0.32	I.0
°1	C]	0.2	0.4	0.6	0.8	I.0
те	МΠ.	OTH	осител	ьная	нагруз	ка

[00]	0.2	0.4	0.6	0.8	1.00
20	0.03	0.09	0.23	0.54	I.00
30	0.04	0.09	0.24	0.54	I.00
40	0.05	0.10	0.25	0.56	I.IC

В таблице I указан перечень значений λ для типов элементов, использованых в электронике АЗ. В последнем столоце этой таблицы приведены различные значения λ , учитывающие при этом, где это возможно: тип элемента, странуизготовитель, условия работы и др. Эти значения использованы в приведенных далее вычислениях.

С использованием схем отдельных модулей и перечня их глементов [] вычислены значения параметра 2 (для определенного количества элемен-

λ×10⁶ [1/ч] THI SJEMEHTA [3] .. [4] [5] [6] [7] IIPHHATC $\begin{array}{c} 0.004 \ + \ 0.89\\ 0.03 \ + \ 10.5\\ 0.003 \ + \ 82\\ 0.02 \ + \ 8\\ 0.04 \ + \ 3.2\\ 0.06 \ + \ 4.2\\ 0.02 \ + \ 1.2\\ 0.02 \ + \ 1.2\\ 0.5 \ + \ 4.6\\ 0.02 \ + \ 0.08\\ 0.13 \ + \ 0.34 \end{array}$ 0.1 $0.14 \div 0.40$ 0.0002 0.5 0.1 Сопротивления Сопротивления переменные 1.4 0.3 0.03 + 0.220.0009 0.5 Конденсаторы .4 Конденсаторы электролитические Ξ 0.2 0.001 + 0.050.007 + 0.360.06 + 2.6 0.45 + 0.83 2.0 Диоды Транзисторы Микросхемы 0.5 0.2 1.75 + 1. + 12 + 4.64 + 0.08 0.34 Трансформаторы Тиристоры 12 0.5 Предохранители 0.005 0.01 Место пайки Контакти

ТАБЛИЦА І. ИНТЕНСИВНОСТИ ОТКАЗОВ ЭЛЕМЕНТОВ ПО РАЗЛИЧНЫМ ИСТОЧНИКАМ

таблица 2. количество элементов и интенсивности отказов модулея электроники канала аварияноя защиты

THI RAEMENTA	3-1 n λ m. ×10 ⁶	3-2 n 1 mr. ×10 ⁶	3-3 n λ mτ. ×10 ⁶	3-4 n λ ur. ×10 ⁶	3-5 n λ m. ×10 ⁶ 1	ВОЛ МОД 3-6 п λ шт. ×10 ⁶	3-7 n λ m7. ×10 ⁶	3-8 n λ mr. ×10 ⁶	3-9 n λ πτ. ×10 ⁶	3-10 n λ π. ×10 ⁶	3-11 n 1 mr. ×10 ⁶
Сопротивления поременяне конценсаторы Конценсаторы Води Поди Транкисторы Макросхемы Туранкисторы Педахренители Предохренители Макросхемы Туранкисторы Предохренители Макросхемы Туранки со Предохренители Макросхемы Туранки со Предохренители	55 542 12 4.6 14 2.6 14 2.6	33 3.3 3 4.2 7 2.8 5 1 6 11 11 2 1 173 1.7 10 2	21 2.1 2 .8 8 1.6 7 7 1 0.5 1 0.2 1 12 124 1.2 15 3	17 1.7 1 1.4 26 6 1.2 3 3 1 0.5 92 0.9 1 14 2.8	22 2.2 1 1.4 4 1.6 2 1.8 6 1 1 0.2 122 1.2 10 2	22 2.2 1 1.4 3 1.2 9 1.8 5 5 2 1 0.2 126 1.3 10 2	28 2.8 4 1.66 3 14 4.5 14 2.4 3 14 2.4 3 10.2 1 1.5 1 1.5	98 9.8 3 4.2 14 5.6 9 1.8 43 8.6 20 20 9 4.5 1 0.2 3 5 490 4.9 24 4.8	6 0.6 	298828 1.8 1.8 1.8 1.1 1.1.6 1.5 1.1.6 1.5 1.2	2 0.2 2 .8 8 1.6 12 2.4 -
CYNNA IIPXERTO	32.7 33	28.6 29	29.2 30	12.9 13	17.8 18	16.7 17	34.6 35	100.4 100	20.6 21	23.5 24	13.9 14

тов) и параметра Λ для модулей. Результати этих расчетов приведени в таблице 2. В последней строке таблици помещени значения Λ , используемие в дальнейших расчетах.

Электронные модули, указанные на блок-схеме на рисунке I,с функциональной точки зрения действуют как три составные части:

- информационная (И),
- автоматического регулирования (АР),
- аварийной защиты (АЗ).

Действуя как система информационная, электроника канала АЗ вырабатывает оптические и электрические сигналы об импульсах мощности реактора, а также об исправности самой аппаратуры. Для этой цели используются соответствующие электрические схемы с лампочками, встроенными в пять из указанных модулей. Импульсный вольтметр(3-2) и переключатель(3-9) позволяют измерять амплитуду импульсов мощности и все питающие напряжения. Электроника канала АЗ вырабатывает также электрические сигналы типа "Уменьшение амплитуды", "Начало работы" и другие, пересылаемые вне СУЗ. Информационную способность АЗ расширяет возможность непосредственного подключения самописца к вольтметру.

В режиме работн "автоматическое регулирование" электроника АЗ генерирует серию управляющих импульсов из модулей 3-1 и 3-4, пересылаемых в схему автоматического регулирования (AP).

Выполняя функцию аварийной защити, электроника канала АЗ имеет задачу создания в определенных случаях сигнала "АВАРИЯ", поступающего дальше в схему Логики.

В реализации отдельных функций принимают участие (в различной степени) отдельные модули, что в общем виде показывает таблица 3.

ТАБЛИЦА З. УЧАСТИЕ МОДУЛЕИ КАНАЛА АЗ В РЕАЛИЗАЦИИ ОТДЕЛЬНЫХ ФУНКЦИИ

学校学校学校学校学校			jinta.	angta (CIMBO.	л мол	RIVIA	a gi	e e e		
Функция	3-1	3-2	3-3	3-4	3–5	3-6	3-7	3-8	3-9	3-10	3-11
информации регулирования защиты	+ + +	+ 0 0	+ 0 0	0 + 0	+ 0 0	+ 0 0	+ 0 0	+ 0 +	0 0	++++++++	

+ - участвует, 0 - не участвует

Участие модуля в реализации функции с точки зрения надежности обозначает, что без данного модуля или в случае его отказа эта функция не может быть выполнена. По этой причине в таблице 3 учтены источники питания (модули 3-I0 и 3-II).

Так как электроника канала АЗ выполняет различные функции, то, рассматривая вопрос надёжности, нужно определить точно, - о надежности какого действия идет речь. Основным назначением канала АЗ является предупреждение опасных ситуаций, и тогда приведённое дальше рассмотрение надежности будет касаться функции аварийной защиты.

На рис. 2 изображена схема электроники канала АЗ и её функциональные связи при выполнении функции защити согласно данным табл.З и рис. I.

Рис. 2. Общая схема электроники канала АЗ в функции защитн.

Для определения надёжности необходимо учитывать общепринятые условия работы и эксплуатации СУЗ, а также классифицировать неисправности. Согласно этим требованиям принято, что:

- каналы АЗ работают в надёжной структуре типа 2 из 4 или I из 3,
- работа происходит в определённых условиях (постоянная номинальная мощность реактора и частота),
- продолжительность непрерывной эксплуатации СУЗ достигает 300 часов.
- сиистема АЗ является системой ремонтопригодной с продолжительностью ремонта не свыше двух часов.

Определение указанных выше условий не является достаточным, так как модуль 3-8 многофункциональный. Согласно техническому описанию модуль этот формирует логический сигнал "АВАРИЯ" в случаях, если:

- амплитуда импульса мощности превышает установленный порог,
- амплитуда импульса мощности меньше установленного порогового уровня,
- во время работи реактора на частотах 5, IO (или 25) Гц появляются импульси, имеющие частоту свыше 25 Гц.

Рис. З. Блок-схема функциональных элементов модули 3-8.

Рассматривая (на основании документации СУЗ) функциональную структуру модуля 3-8, можно сделать его блок-схему и взаимные связи в виде, указанном на рисунке 3. Согласно этой схеме блок триггеров 3-8 состоит из следующих устройств:

- ИСА источниика сигналов "Авария", содержащего одностабильный мультивибратор (ОМІ) и генератор прямоугольных импульсов (IПИ). ИСА является элементом, общим для всех триггеров.
- ТПА триггера превышения амплитуды импульса мощности, или пороговой системы (ПСІ).
- ТПЧ триггера превышения частоти, составленого из пороговой системы (ПС2), двух одностабильных мультивибраторов (ОМ2 и ОМ3) и одной исполнительной системы (ИСІ).
- ТУА триггера уменьшения амплитуды импульса мощности, в котором различаются две пороговые системы (ПСЗ и ПС4), одностабильный мультивибратор (ОМ4) и исполнительная система (ИС2).

Рассчитивая значение A для всех указаных выше функциональных элементов триггеров, мн не учитывали те участки, которые выполняют информационную роль. Это касается схем световой сигнализации. Результаты проведенных внчислений собрани в таблице 4.

ТАБЛИЦА 4. КОЛИЧЕСТВА ЭЛЕМЕНТОВ И ИНТЕНСИВНОСТИ ОТКАЗОВ ДЛЯ СОСТАВА ТРИГТЕРОВ (МОДУЛИ 3-8)

		CA	I TILA	i Ali	CM T	NBOJI MOJ	уля	1. A 1919	TYA	
ТИІ ЭЛЕМЕНТА	п п шт. ×10 ⁶	ΟΜΙ n λ шт. ×10 ⁶	ΠCI n λ m. ×10 ⁶	ΠC2 n λ шт. ×10 ⁶	ом2 л λ шт. ×10 ⁶	CM3 n λ mr. ×10 ⁶	ИСІ п λ шт. ×10 ⁶	$\begin{array}{c c} \Pi C3 & 0 \\ n & \lambda & n \\ \blacksquare T. \times 10^6 \blacksquare T. \end{array}$	$\begin{array}{c c} & & \\ & \lambda & \\ & \lambda & \\ \times 10^6 & \\ & \\ & \\ \end{array} \begin{array}{c} \Pi C4 \\ n & \lambda \\ \times 10^6 \\ \\ & \\ \\ & \\ \end{array} \begin{array}{c} \Pi C4 \\ n & \lambda \\ \times 10^6 \\ \\ & \\ \\ & \\ \\ & \\ \end{array} \begin{array}{c} \Pi C4 \\ n & \lambda \\ \\ & \\ \\ & \\ \end{array} $	ИС2 n λ б шт. ×10 ⁶
Сопротивления переменные сопротивления переменные конденсаторы завектролитические Диолы Транзироскема Инжероскема Транзироскема Инжероскема Масто палоси Мострати Масто палоси	10 1 2	7 0.7 1 .4 1 .2 4 0.8 1 0.5 32 0.3 4 .0.8	6 0.6 1 1.4 1 .4 2 0.4 1 0.5 30 0.3 4 0.8	7 0.7 2 0.4 1 0.5 24 0.2 5 1	6 0.6 3 1.2 4 0.8 1 0.5 34 0.3 4 0.8	9 0.9 2 .8 5 1 1 0.5 41 0.4 4 0.8	8 0.8 1 .4 3 0.6 4 4 38 0.4 4 0.8	6 0.6 9 1 1.4 2 1 .2 1 2 0.4 5 1 0.5 1 26 0.3 43 5 1	$\begin{array}{c} 0.9 \\ - \\ .8 \\ 1 \\ .2 \\ 1 \\ .2 \\ .2 \\ .2 \\ .2 \\ .2 \\$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
СУЮМА ПРИНЯТО	9.1 9	3.7	2.6 3	2.8 3	4.4 5	5.4	7.2 7	4.4 5	5.6 4.2 6 4	2 9 . 1

Последним этапом проведенного анализа была классификация отказов модулей или их частей. Отказом в нашем случае именуется такое событие, которое ведёт к полному или частичному прекращению исполнения основных функций данной схемы. В сделаной классификации отказов учтён их конечный эффект. Выделено три таких эффекта:

4 отказ, вызывающий сигнал информационного типа (И),

- отказ, вызывающий сигнал "Авария" (А),
- отказ, не вызывающий видимого эффекта (-).

Итоги проведеной классификации указаны в таблице 5, в которой приведены также значения Л для рассматриваемых схем.

ТАБЛИЦА 5. ИНТЕНСИВНОСТИ И ЭФФЕКТН ОТКАЗОВ МОДУЛЕИ КАНАЛА АЗ.

Модуль	3-1	И(ГПИ	CA OMI	ТПА ПСІ	пс2	3- TI OM2	-8 14 0M3	NCI	псз	TX OM4	7А ПС4	ИС2	3-10	3-11
Эффект	И, А	A	-		2 <u>-</u>				A	A	-		И,А	И,А
۸×10 ⁶	33	9	4	3	3	5	6	7	5	6	4	9	24	14

Все откази можно разделить на две основние группи: обнаруживаемие и опасние. Опасние откази - это откази, не визивающие видимого эффекта, и оператор реактора не может узнать, что система защити неисправна.

Опасные отказы удаляются во время периодической проверки СУЗ, а отказы

обнаруживаемые - во время работы системы (если количество этих отказов

Учитывая разделение модуля 3-8 по реализованным функциям (согласно блоксхеме на рис. 3), полученные результати вичислений интенсивности отказов явных (Λ) и скрытых (λ), можно принять блок-схему канала A3, как на

3 - 11

Λ=14

3-1

∆=33

не перевышает одного).

3 - 8(TIIA)

рисунке 4.

3-10

Λ=24

λP₀₃

μP

13

13

23

04

14

24

(3AP14

μP

В этом графе существует 15 состояний, обозначенных символами "ху", и 23 возможных перехода между этими состояниями. Принятые символы:

3λP₀₁

μP

4^{AP}02

3AP12

12

22

 0^{\dagger}

3AP11

21

4λP₀₀

µΡ.

10

4ΛP₀₀

3AP10

20

x - количество каналов, отказавших явно (0<=x<=2);

22P02

4^{AP}03

3^{AP}13

- у количество каналов, имеющих скрытые отказы (0<=y<=4);
- Л ИНТЕНСИВНОСТЬ ОТКАЗОВ ЯВНЫХ;
- λ интенсивность отказов скрытых;
- μ интенсивность ремонтов (μ =1/tn);
- Руу вероятность пребывания системы в состоянии "ху" (зависящая от времени).

Произведения $\mu P_{xy} n \Lambda P_{xy}$ и $m \lambda P_{xy}$ на переходах между состояниями обозначают интенсивности этих переходов.

Описание скорости изменения вероятности пребывания системы в данном состоянии можно (например, для состояния "12") написать в виде

$$\frac{\mathrm{d}P_{XY}}{\mathrm{d}t} = 4\Lambda P_{02} + 3\lambda P_{11} - 2\lambda P_{11} - 3\Lambda P_{12} - \mu P_{12}.$$

Состояниие "12" обозначает, что один канал отказал явным способом, а 2 канала - скрытым. Из этого состояния возможны переходы в:

- состояние "22", если явно отказал один из явно исправных до сих пор каналов (ЗАР12);
- состояние "I3", если скрыто отказал один из каналов, в котором не было необнаруженых повреждений (22Р12);
- состояние "02", как эффект ремонта канала, явно поврежденого (µP12).

Q 2.2,

ТАБЛИЦА 6. ИНТЕНСИВНОСТИ ОТКАЗОВ КАНАЛА АЗ

лучаем в итоге для разных функций канала АЗ:

Функця	Δ	λ
превышение амплитуды импульса	80°10 ⁻⁶	7·10 ⁻⁶
уменьшение амплитуды импульса	118•10 ⁻⁰	17.10-0

Рис. 4. Блок-схема надёжности и интенсивности отказов модулей канала АЗ.

Согласно принятому условию о) (суммирования интенсивности отказов) по-

Подводя итог проведенного анализа, можно систему АЗ описать следующим образом:

четыре независимых канала, действующих в структуре 2 из 4 (І из 3) с отказами явными (которие можно убрать во время работи СУЗ в течение tn часов) и отказами скрытыми (опасными).

Для таких систем можно построить граф возможных состояний, указаный на рисунке 5.

/5.1/
/5.2/
/5.3/
/5.4/
/5.5/
/5.6/
/5.7/
/5.8/
/5.9/
/5.10/
/5.11/
/5.12/
/5.13/
/5.14/
/5.15/

В состоянии "12" система может быть вследствие перехода из состояния

"11" (ЗАР₁₁) или состояния "О2" (4АР_{О2}), т.е. вследствие скрытого или

Полное описание всех состояниий системы АЗ (согласно графу на рис.5)-это 15 дифференциальных уравнений, решаемых для начальных условий (для t=0) в

которых Р00=1, а все остальные вероятности равны нулю:

явного отказа одного из каналов.

Вычисления, согласно этим соотношениям. проведены с учётом 300 часов беспрерывной работы системы и 2 часов на время удаления явного отказа. Результаты этих вычислений приведены в таблице 7. ТАБЛИЦА 7. РЕЗУЛЬТАТН ВЫЧИСЛЕНИИ ВЕРОЯТНОСТИ ДЛЯ РАЗЛИЧНЫХ СОСТОЯНИИ И ФУНКЦИИ ЭЛЕКТРОНИКИ СИСТЕМЫ АВАРИИНОЙ ЗАЩИТЫ СУЗ

	состояние	превышение амплитуды	ФУНКЦИЯ уменьшение амплитуды	превишение частоты	
	P _{OO}	9.909×E-01	9.697×E-01	9.790×E-01	
ta s Si tit	P ₁₀	6.339×E-04	6.203×E-04	7.123×E-04	17
e Marina	P ₂₀	4.568×E-05	4.519×E-05	5.874×E-05	-
	P_{01}	8.361×E-03	2.930×E-02	2.009×E-02	
	P ₁₁	5.348×E-06	1.874×E-05	1.462×E-05	4
, с. н. 63 м.	P ₂₁	1.930×E-07	6.807×E-07	6.022×E-07	199
	P ₀₂	2.636×E-05	3.309×E-04	1.541×E-04	Ĵ,
	P ₁₂	1.686×E-08	2.117×E-07	1.121×E-07	j.
	P22	4.040×E-10	5.092×E-09	3.062×E-09	
<u>.</u>	P ₀₃	3.683×E-08	1.655×E-06	5.235×E-07	ų.,
	P ₁₃	2.356×E-11	1.059×E-09	3.809×E-10	
	P ₂₃	4.216×E-13	1.900×E-11	7.767×E-12	1
d si	P_04	1.922×E-11	3.095×E-09	6.647×E-10	
	P ₁₄	1.230×E-14	1.980×E-12	4.837×E-13	i. Kj
1. 14 18. 19	P ₂₄	1.754×E-16	2.829×E-14	7.857×E-15	÷
1.1.5	A REAL PROPERTY AND A REAL		1	[1] J. M. Martin, Phys. Rev. Lett.	

ЗАКЛЮЧЕНИЕ

Анализируя действие системы, нужно учитывать, что самые опасные состояния - это состояния, в которых отказали скрыто 3 или 4 канала, т.е. система АЗ теоретически не действует. Это касается состояний 03, 04, 13 и 14. По этой причине, кроме вычислений вероятности пребывания системы в любом состоянии, вычислена сумма вероятности опасных состояний:

$$\Sigma P_0 = P_{03} + P_{04} + P_{13} + P_{14}$$

Из указаных результатов следует, что для строгого критерия $\sum P_0$ вероятность несрабатывания системы на требование определенной функции не должна превышать:

цля	функции	уменьшения амплитуды 1.659×E-06,	,
цля	функции	превышения частоты 5.246×E-07,	
цля	функции	превышения амплитуды 3.687×Е-08.	

Все эти результати отвечают общим требованием для систем управления и защити ядерных реакторов (P < 1E-05), определенных по ГОСТу [8].

Опыт эксплуатации системы показал, что в период с декабря 1983 года до апреля 1991г в системе АЗ произошёл только один отказ: микросхемы в триггере превышения амплитуды. Событие это отвечает состоянию 01, для которого рассчитана вероятность порядка 8.4 10⁻³.

Лиитература

- 1. Техническое описание комплекса аппаратуры ИБР-2. Instytut Badan Jadrowych, 1974.
- Луцкий В.А. Расчет надежности и эффективности радиоэлектронной аппаратуры. << Наукова думка >>, 1966.
- 3. Prazewska M. 1 in.-Niezawodnosc urzadzen elektronicznych. <<WLK>>, 1987.
- 4. Савелев А.Я., Овчинников В.А. Конструирование ЭВМ и системов. <<Высшая школа >>, 1989.
- 5. Informator o niezawodnosci podzespolow elektronicznych (dane z lat 1984 - 1986).<< COBRESPU >>,1987.
- 6. Gladysz H., Peciakowski E. Niezawodnosc elementow elektronicznych.
 << WLK >>, 1984.
- 7. System Automatycznego Projektowania Niezawodnosci Sprzetu Elektronicznego. PIT-Warszawa, 1988.
- 8. ГОСТ 26843-86 " Реакторн ядерные энергетические ". Общие требования и система управления и защитн.

Рукопись поступила в издательский отдел 23 июля 1991 года.

1960 A. 1940