90-501

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

P11-90-501

1990

Т. Жанлав, И.В.Пузынин, Ю.С.Смирнов

АЛГОРИТМ И ПРОГРАММА РЕШЕНИЯ ЗАДАЧИ ШТУРМА - ЛИУВИЛЛЯ С ИСПОЛЬЗОВАНИЕМ СПЛАЙН-СХЕМЫ ПОВЫШЕННОЙ ТОЧНОСТИ

1. ПОСТАНОВКА ЗАДАЧИ

Рассмотрим задачу на собственные значения

$$L(\lambda)y \equiv \left(\frac{d^{2}}{dr^{2}} + Q\frac{d}{dr} + (\lambda R - U)\right) \quad y = 0 \quad , a \le r \le b, \qquad (1)$$

$$l_{1}y \equiv \tilde{\alpha}_{1}(\lambda)y + \tilde{\beta}_{1}(\lambda)y' = 0 \quad , r = a,$$

$$l_{2}y \equiv \tilde{\alpha}_{2}(\lambda)y + \tilde{\beta}_{2}(\lambda)y' = 0 \quad , r = b,$$

$$\tilde{\alpha}_{1}^{2} + \tilde{\beta}_{1}^{2} \equiv 0 \quad , i = 1, 2.$$

Здесь $\tilde{\alpha}_{1}$, $\tilde{\beta}_{1}$ — нелинейные и гладкие функции относительно λ , a Q, R,U — достаточно гладкие функции во всех точках интервала (a,b), за исключением точек r=a и r=b, в которых они могут иметь особенности.

Задача о нахождении отдельных значений параметра λ, которым соответствуют нетривиальные решения у задачи (1),(2), часто встречается в различных разделах теоретической физики ^{/1,2,3/}.

В настоящее время создано несколько алгоритмов и пакетов программ, например /4-6/, численного решения задачи (1),(2). В них, в частности, в качестве основы аппроксимации были использованы метод конечных разностей (МКР) и метод конечных элементов (МКЭ) повышенного порядка точности.

В настоящей работе представлены вычислительная схема и стартовый пакет программ для решения задачи (1),(2) на основе метода сплайн-аппроксимации с последующим применением модификации непрерывного аналога метода Ньютона. Метод сплайн-аппроксимации для задачи Штурма-Лиувилля сравним с МКР по сложности его реализации на ЭВМ, и в то же время он дает приближенные собственные функции и ее производные на всем интервале, где ищется решение. По этим причинам он привлекает внимание для задачи (1),(2).

Отметим, что пакет без особых затруднений может быть реализован на пресональных компьютерах типа IBM PC (ХТ или АТ).

DOLCARSENED IN CHETRYY TACKED TOCACLOBADE SHE MUSTERA

2.АЛГОРИТМ ЧИСЛЕННОГО РЕШЕНИЯ

отрезке [a,b] вводится Ha равномерная Δ_{h} : a=r₀ <r₁ <... <r_N=b с шагом h = r₁₊₁ - r₁, и приближенное решение у ищется в виде кубического сплайна класса C²[a,b]:

$$y \approx S = \sum_{j=-1}^{N+1} \alpha_j B_j(r),$$
 (3)

где B₁(r) — нормализованные кубические В-сплайны ^{/7/}. Отметим, что здесь сетка Δ_h дополнена узлами $r_i = r_0 - ih$; $r_{H+1} = r_H + ih$, i = 1,2,3 для того, чтобы было справедливым представление (3). Потребуем, чтобы сплайн удовлетворял соотношениям

$$L(\lambda)S + \frac{h^2}{12} \overline{\Delta}^2[S'']^+ = 0 , r \in \Delta_h , \qquad (4)$$

$$l_1 S = 0$$
, при $r = r_0$,
 $l_1 S = 0$, при $r = r_0$, (5)

где

$$\left[S''\right]^{+} = \begin{cases} 2 S_{1}'' - S_{2}'' & r = r_{0} \\ S_{1}'' & r = r_{1}, i = 1, \dots, M-1 \\ 2 S_{H-1}'' - S_{H-2}'' & r = r_{H} \end{cases}$$

 $\overline{\Delta}^2 S_1 = (S_{1+1} - 2S_1 + S_{1-1})/h^2$ - вторая разделенная разность. При этом уравнение (4) имеет погрешность аппроксимации O(h⁴). Задачу (4), (5) вместе с условием нормировки решения

$$(S,S) - 1 = 0$$
 (6)

можно рассматривать как нелинейное функциональное уравнение вида

$$\Phi(z) = 0$$
, $z = (\lambda, S)$, (7)

для решения которого удобно применить обобщенный алгоритм с включением возмущения на основе непрерывного аналога метода Ньютона^{/8,9/}. При выполнении условия гладкости оператора Ф(z) и существования ограниченного оператора (Ф_)⁻¹ в окрестности искомого изолированного решения $z^{\star} = (\lambda^{\star}, S^{\star})$ справедливо соотношение /10,11/

$$\lim_{t \to 0} || z(t) - z^{*} || = 0$$
.

Для краткости приведем лишь алгоритм. На каждой итерации необходимо решить следующие задачи

$$L(\lambda_{n})u_{n} = -rS_{n}, \qquad r\in\Delta_{h},$$

$$l_{1}(\lambda_{n})u_{n} = -(S_{n}\frac{d\tilde{\alpha}_{1}(\lambda_{n})}{d\lambda} + S_{n}'\frac{d\tilde{\beta}_{1}(\lambda_{n})}{d\lambda}), \qquad r=r_{0}, \qquad (8)$$

$$l_{2}(\lambda_{n})u_{n} = -(S_{n}\frac{d\tilde{\alpha}_{2}(\lambda_{n})}{d\lambda} + S_{n}'\frac{d\tilde{\beta}_{2}(\lambda_{n})}{d\lambda}), \qquad r=r_{H},$$

$$L(\lambda_{n})\Omega_{n} = -\frac{h^{2}}{12}\overline{\Delta}^{2}[S_{n}'' + g_{n}\frac{S_{n}'' - S_{n-1}''}{\tau_{n-1}}]^{+}, \qquad r\in\Delta_{h},$$

$$l_{1}(\lambda_{n})\Omega_{n} = 0, \qquad r=r_{0}, \qquad (9)$$

 $I_2(\Lambda_n)M_n = 0$ где g_n = 1-exp(-t_n) - значение функции включения в точке $t_{n} = t_{n-1} + \tau_{n-1}$.

После решения систем (8) и (9) следующие приближения определяются по формулам

$$S_{n+1} = (1-\tau_n)S + \tau_n(\mu_n u_n + \Omega_n) ,$$

$$\lambda_{n+1} = \lambda_n + \tau_n \mu_n , \quad n=0,1,...,$$

$$\mu = \frac{1+(S_n,S_n)-2(\Omega_n,S_n)}{2} , \quad n=0,1,... \quad (11)$$

гд

$$\mu_{n} = \frac{1 + (S_{n}, S_{n}) - 2(\Omega_{n}, S_{n})}{2(U_{n}, S_{n})} , \quad n=0, 1, \dots$$
(11)

Итерационный параметр т в формулах (10) выбирается оптимальным образом /12/ из принципа минимизации квадрата невязки уравнения (4). Интегралы в скалярном произведении в (11) вычисляются с помощью формулы Симпсона с узлами на сетке Д. В случае сходимости итераций (10), (11) и $||L(\lambda_{1})^{-1}|| \leq K < \infty$ можно показать, что

$$|\lambda^{*} - \lambda_{n}| = O(h^{4}),$$

$$||y^{*} - S_{n}||_{c} = O(h^{4}), \quad \text{при } n \to \infty.$$
(12)

Если коэффициенты уравнения (1) имеют особенность в точках r=a и r=b, то не представляется возможным записать уравнение (4) в этих точках. В этом случае можно потребовать выполнения условия непрерывности третьей производной сплайна///, т.е.

 $S'''(r_{i=0}) = S'''(r_{i=0}), \quad i=1, M-1,$ которые легко реализуются в терминах коэффициентов сплайна/13/. Следует отметить, что при решении систем (8),(9) может возникнуть вопрос о возможной потере точности в достаточно близкой окрестности искомого собственного значения. Однако, как показано в /14,15/, данная процедура при правильной организации вычислений не приводит к большой потере значащих цифр и не

представляет сложности (особенно на ЭВМ с большой разрядностью машинного слова).

Описанный алгоритм может применяться и для решения задачи рассеяния, котроую можно свести к нелинейной краевой задаче^{/8/}

$$\left(\frac{d^2}{dr^2} + k^2 - \frac{l(l+1)}{r^2} - \tilde{U}(r)\right) y = 0$$
, (13)

 $y = 0, \qquad r = 0, \qquad (14)$ $\overline{e}(y, y') = 0, \qquad r \to \infty, \qquad (14)$

где $\bar{e}(y,y')$ - некоторая нелинейная функция от у и у'.

Уравнение (13) является частным случаем уравнения (1), в котором Q(r)=0, R(r)=0, U(r)= $-k^2 + \frac{l(l+1)}{r^2} + \tilde{U}(r)$. При этом коэффициенты $\tilde{\alpha}_i, \tilde{\beta}_i$ в (2) не зависят от λ . В этом случае легко видеть, что правая часть системы (8) равна нулю, и, следовательно, u=0. Таким образом, в случае задачи рассеяния нет необходимости решения системы (8). Краевые условия в системе (9) примут вид

$$\begin{split} 1_{1}\Omega_{n} &\equiv \Omega_{n} = 0, \qquad r=0 \\ 1_{2}\Omega_{n} &\equiv \frac{\partial \overline{e}(S_{n}, S_{n}')}{\partial y} \Omega_{n} + \frac{\partial \overline{e}(S_{n}, S_{n}')}{\partial y'} \Omega_{n}' = \\ &= -\overline{e}(Y_{n}, Y_{n}') + \frac{\partial \overline{e}(S_{n}, S_{n}')}{\partial y} S_{n} + \frac{\partial \overline{e}(S_{n}, S_{n}')}{\partial y'} S_{n}', \quad r \rightarrow \infty. \end{split}$$

Так как u ≡0, то следующее приближение к решению можно определить по формуле

$$S_{n+1} = (1-\tau_n)S_n + \tau_n\Omega_n .$$

Таким образом, в задаче рассеяния опускаются те части программы, по которым находятся величины u_n, µ_n и скалярные произведения.

После вычисления волновой функции в пределах заданной точности вычисляется фаза рассеяния с использованием асимптотики решения и его производной /8/.

1、月111日前一家,个村民**日日投口**,今日,首风信号的几日日二。

З.СТРУКТУРА ПРОГРАММЫ. ОПИСАНИЕ ПОДПРОГРАММ И ПАРАМЕТРОВ

Рис.1 Структура программы EVSA4.

Программа EVSA4, реализующая описанный выше алгоритм численного решения задачи Штурма-Лиувилля, состоит из 11 подпрограмм. Ее структура схематично представлена на рис.1. Программа реализована на языке FORTRAN-77 и предназначена для эксплуатации на персональных компьютерах типа IBM PC (ХТ и АТ) в версии RM-FORTRAN, а также на ЭВМ серии EC. Все вычисления проводятся с двойной точностью. Программа достаточно компактна по своим размерам (порядка 300 инструкций FORTRANa), проста в эксплуатации, не требует для рассмотренного класса задач больших затрат машинного времени и оперативной памяти ЭВМ, а также не использует в процессе вычислений периферийную память.

В основной MAIN-подпрограмме определяются максимальные границы рабочих массивов, необходимых в процессе решения задачи. Стандартное значение M=2800 может быть изменено по усмотрению пользователя.

Для численного решения задачи (1)-(2) необходимо на входе определить значения следующих параметров: М — количество узлов равномерной сетки Δ_h (без первой точки r_o);

н – значение шага сетки Δ_h, на которой производится решение задачи;

АК2 – заданное значение λ_0 , т.е. начальное приближение к собственному значению задачи Штурма-Лиувилля;

EPS - абсолютная точность для итерационного процесса;

RMIN - левая граница отрезка изменения г.

Следующие четыре параметра определяют вид граничных условий на концах области изменения r, а именно :

Z1 - коэффициент при первой производной собственной функции на левом конце отрезка изменения r, т.е. в точке RMIN;

Z2 - коэффициент при собственной функции в точке RMIN;

F1 – коэффициент при первой производной собственной функции на правом конце отрезка изменения r;

F2 – коэффициент при собственной функции на правом конце отрезка изменения г.

Остальные параметры определяют вид входных потенциалов $U(r_i)$, $Q(r_i)$, $RR(r_i)$ и собственной функции $y(r_i)$ и задаются пользователем в зависимости от выбора конкретного потенциала.

Считывание всех входных параметров осуществляется при помощи оператора READ(*,*)... в свободном формате, что значительно упрощает процедуру ввода данных пользователя.

Определенные таким образом параметры и массивы передаются в подпрограмму START. Здесь происходит заполнение сетки Д в массив R(I).

В подпрограмме YINIT происходит определение начального приближения к собственной функции у(r₁), которое задается при помощи аналитической формулы в зависимости от вида входных потенциалов задачи, при этом начальное приближение к собственному значению λ задается вблизи известного аналитически или предполагаемого решения.

Сами потенциалы U(r₁),Q(r₁), а также RR(r₁) вычисляются по аналитическим формулам, задаваемым пользователем, соответственно в подпрограммах UINIT, QINIT и RRINIT.

В подпрограмме START реализуется ньютоновский итерационный процесс. На каждой итерации в подпрограмме DIFFER осуществляется вычисление коэффициентов сплайна AL(r₁), а также необходимых аппроксимаций очередных приближений собственной функции и ее производных. После вычисления коэффициентов A₁, B₁, C₁ (а это может быть сделано один раз за время работы программы) на каждой ньютоновской итерации определяются коэффициенты правых частей FB₁ краевых задач (8)-(9), в ходе вычисления которых происходит обращение к подпрограмме-функции GFUNC(T), возвращающей значение функции включения возмущения.

В подпрограмме PROGON осуществляется решение краевых задач (8)-(9) методом прогонки. В результате ее работы находятся итерационные поправки $V(r_i)=u_i$ и $\tilde{V}(r_i)=\Omega_i$. Скалярное произведение двух векторов на каждой ньютоновской итерации вычисляется по формуле Симпсона в подпрограмме QUADR1. На выходе подпрогаммы FUNC выдается вектор, определенный во внутренних узлах, сетки Δ_h , максимальный по абсолютной величине элемент которого дает главную компоненту невязки D_n на n-ой итерации. Выход из ньютоновского итерационного процесса осуществляется либо по условию max { D_n, $|\mu_n|$ } \leq EPS, T.e. при достижении сходимости-1 с заданной точностью, либо по истечении заранее установленного числа итераций.

Внутри итерационного процесса предусмотрена печать следующей информации:

N = n - номер текущей итерации;

AK2 = λ_n - собственное значение;

FIMAX = D - значение главной компоненты невязки;

UM1 = $\mu_{\rm p}$ - величина поправки;

TAU = $\tau_{\rm p}$ - значение итерационного шага по параметру t.

После завершения ньютоновских итераций на печать выдаются: столбец значений R₁ сетки Δ_h с определенным пользователем шагом и соответствующий столбец значений собственных функций Y₁.

4.ЧИСЛЕННЫЕ ИССЛЕДОВАНИЯ

Представленная выше программа EVSA4 была проверена на ряде тестов^{/16/}, а также использовалась для решения некоторых задач ядерной физики.

ПРИМЕР 1. Уравнение лежандра:

$$y''(x) - \frac{2x}{1-x^2} y'(x) - \frac{\lambda}{1-x^2} y(x) = 0$$
, $x \in (-1,1)$

x = +1.

с граничными условиями:

 $y'(x) - \frac{\lambda}{2} y(x) = 0$, $y'(x) + \frac{\lambda}{2} y(x) = 0$,

Точные собственные значения данной задачи имеют вид: $\lambda_n = -n(n+1)$, а собственные функции могут быть найдены по следующей аналитической формуле:

$$y(x) = \tilde{p}_n(x) = \sqrt{\frac{2n+1}{2}} p_n(x),$$

где $p_n(x)$ удовлетворяют реккурентному соотношению:

$$(n+1)p_{n+1}(x) - (2n+1)xp_n(x) + np_{n-1}(x) = 0, \text{ t.e}$$

 $p_0(x) = 1, p_1(x) = x, p_2(x) = \frac{1}{2}(3x^2-1), \dots$

В таблице 1 приведены результаты работы программы EVSA4 на

Таблица 1. Собственные функции $\tilde{p}_2(x)$ и собственные значения λ₂ для уравнения Лежандра на последовательности вдвое сгущающихся сеток Δ₆ (h=0,05)

x	h=0,05	h/2	h/4	σ
-1,0	1,5811314	1,5811384	1,5811388	17,5
-0,8	0,72732045	0,72732365	72732285م 0	16,0
-0,6	-0,063245256	-0,063245535	-0,063245552	16,4
-0,4	-0,41109417	-0,41109598	-0,41109609	16,4
-0,2	-0,69569782	-0,69570088	-0,69570107	16,1
0,0	-0,79056571	-0,59056918	-0,59056940	15,77
λ2	-6,0000000	-6,0000000	-6,0000000	• la d - _{and}

Таблица 2. Зависимость собственного значения $\lambda_n o^{lr}$ шага сетки h и правой границы интервала x_{max} при фиксированном числе узлов сетки M=2800 в задаче с кулоновским взаимодействием (1=1)

- n) auan	1		λ _{nh}		
	n anan.	x _{max} =140	x _{max} =280	x _{max} =420	x _{max} =560	x _{max} =840
· 1 ,	-0,0625	-0,0625000	-0,0625002	-0,0625008	-0,0625019	-0,0625065
2	-0,0277(7)	-0,0277778	-0,0277779	-0,0277781	-0,0277785	-0,0277801
3	-0,015625	-0,0156249	-0,0156250	-0,0156251	-0,0156253	-0,0156260
4	-0,01	-0,0099775	-0,0100000	-0,0100001	-0,0100002	-0,0100005
5	-0.0069(4)		-0,0069445	-0,0069445	-0,0069445	-0,0069448
6	-0,0051020	-	-0,0051003	-0,0051021	-0,0051021	-0,0051022
7	-0,0039063	· ·- ·	-0,0038252	-0,0039063	-0,0039063	-0,0039064
8	-0,0030864	-	· · · · - ·	-0,0030839	-0,0030864	-0,0030865
9	-0,0025	-	-	-	-0,0024999	-0,0025001
10	-0,0020661				-0,0205715	-0,0020662

последовательности вдвое сгущающихся сеток (h=0,05) при n=2, т.е. собственное значение λ_2 и собственные функции $y(x) = \tilde{p}_2(x)$, имеющие два нуля в области определения. В последнем столбце таблицы 1 приводятся значения отношения $\sigma = (y_h - y_{h/2}) / (y_{h/2} - y_{h/4})$, свидетельствующие о том, что сходимость приближенного решения задачи (1)-(2) имеет порядок O(h⁴).

ПРИМЕР 2. Задача об определении спектра атома водорода:

y''(x) +	$(\cdot \lambda - \frac{1}{x})$	$+\frac{1(1+1)}{x^2}$	<u>)</u>)	y(x)	= 0 , x	∈ (0,∞)	•
y(x) = 0	• 1.5 1991	÷ .				= 0.	
$\mathbf{y}(\mathbf{x}) = 0$. 1			x	= x→	8
·	a					BICA	

Точное собственное значение находится по формуле:

 $\lambda_n^* = -\frac{1}{4} (1+n)^2, n=1,2,\ldots$

В таблице 2 представлено исследование зависимости собственного значения λ_n (n=1,2,...,10) от шага сетки h и соответствующей правой границы интервала x_{max} при фиксированном числе узлов сетки M=2800. Из этой таблицы видно, что с ростом номера собственного значения n для получения более точного решения необходимо увеличивать правую границу интервала x_{max} (даже несмотря на то, что при фиксированном числе узлов сетки при этом мы должны неизбежно увеличивать шаг сетки h). В таблице выделены для каждого n оптимальные значения h и x_{max} , необходимые для получения абсолютной точности порядка 10⁻⁷ при вычислении соответствующего λ_2 .

ПРИМЕР З. Задача с потенциалом Морзе:

y''(x)	+	($\lambda - U(x)$)	y(x) = 0	, x	Ē	(<i>−∞</i> ,∞),
y(x) =	0	1				x	=	$x \rightarrow \infty$, min
y(x) =	,0	.,,	• ,		4 (17 - 1 14) 4 (17 - 1 14)	, , x	=	$X_{\max} \rightarrow \infty,$

где $U(x) = 2MD [exp(-2\alpha(x-x_a)) - 2exp(-\alpha(x-x_a))].$

Заметим, что в отличие от работы /17/ здесь задача рассматривается не на полуоси, а на всей оси x (-∞,∞). В связи с этим значительно упрощается постановка краевых условий (не требуется привлечения логарифмических производных собственных функций) при сохранении требуемой точности вычислений.

Рассматриваемая задача имеет аналитическое решение:

$$\lambda_{n} = -2MD \left[1 - \frac{\alpha}{\sqrt{2MD}} \left(n + \frac{1}{2} \right) \right], \quad n=0,$$

$$y_{0}(x) = C_{0} \xi^{P} \exp(-\xi/2),$$

8

 $Y_1(x) = C_1 \xi^p (1 - \frac{\xi}{2\rho + 1}) \exp(-\xi/2)$ rge $\xi = 2\delta \exp(-\alpha(x-x_{\alpha})), \quad \delta = \frac{\sqrt{2MD}}{\alpha}, \quad \rho = \frac{\sqrt{\lambda}}{\alpha}.$ При значениях параметров α=0,67; D=0,1055; x=2,15; M=4,69 форма потенциала Морзе близка к форме потенциала для мезомолекулы рри в состоянии с орбитальным моментом 1=0^{/18/}. При проведении расчетов достаточно ограничиться интервалом (-5,30), т.к. дальнейшее расширение области определения не приводит к изменению результатов расчетов. В таблице 3 даны результаты вычислений на

последовательности вдвое сгущающихся сеток (h=0,05) в сравнении с аналитическими значениями. Из таблицы также видно, что сходимость разностного решения имеет порядок O(h4).

Таблица 3. Собственные функции у (х) и собственные значения λ_{b} для потенциала Морзе на последовательности вдвое сгущающихся

сеток ∆ (h=0,05) при x∈[-5,30].

	and the second		the second se	
ಗಿಗ ಸ್ ಕನ್ನ	h=0,05	h/2	h/4 • 7 • 4	σ
0,0	0,0188089185	0,0188089180	0,0188089180	16,97
5,0	0,2944936254	0,2944936193	0,2944936189	16,07
10,0	0,0134449686	0,0134449680	0,0134449680	16,08
20,0	0,0000184719	0,0000184719	0,0000184719	16,07
		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	te de la companya de	λ аналитич.
λ _h	-0,435311467	-0,435311473	-0,435311473	-0,435311473

ПРИМЕР 4. Рассмотрим задачу об одночастичных связанных состояниях, возникающих при взаимодействии ядра нейтроном/19/. При этом параметры потенциала Вудса-Саксона с учетом спин-орбитального взаимодействия:

$$U(x) = U_0 f(x) + U_{s_0}(x) ; \quad U_{s_0}(x) = -\frac{\kappa U_0}{x} (\vec{\sigma} \vec{l}) \frac{df(x)}{dx}$$
$$f(x) = [1 + \exp(\frac{x - R_0}{\alpha})]^{-1}$$

имеют следующие значения: $\alpha = 0,70$ fm; R₀=1,27 fm; U₀ = 44,4 MeV; $\kappa U_0 = 16,5$ MeV. Здесь $\vec{\sigma}/2$, \vec{I} – операторы спина и момента соответственно. В этой задаче в качестве собственного значения λ

Таблица 4. Энергии связанных состояний при взаимодействии л + ²⁰⁸ Pb, вычисленные при помощи программы EVSA4 (схема O(h⁴)), а также по схеме МКР (O(h^2)) в сравнении с расчетом /19/.

000000	Эн	ергия Е, МеV		Ъ
ние	расчет ^{/19/}	0(h ²)	0(h ⁴)	11
		-21,000369	-20,991069	0,2
0g (-20,99	-20,993403	-20,991082	0,1
-972		-20,991228	-20,991083	0,025
		-18,067894	-18,057781	0,2
0g_/_	-18,06	-18,060319	-18,057797	0,1
. 172		-18,057949	-18,057798	0,025
		-17,092630	-17,055044	0,2
1d_ /2	-17,06	-17,064485	-17,055110	0,1
372		-17,055697	-17,055114	0,025
10 C	1	-14,970541	-14,960116	0,2
0h, , , , , , , , , , , , , , , , , , ,	-14,96	-14,962733	-14,960133	0,1
11/2		-14,960290	-24,960134	0,025
		-15,552508	-15,512794	0,2
1d_/_	-15,51	-15,522770	-15,512866	0,1
3/2		-15,513487	-15,512871	0,025
		-15,387646	-15,298945	0,2
2s	-15,30	-15,321421	-15,299359	0,1
1/2		-15,300747	-15,299371	0,025
		-10,701576	-10,690549	0,2
0h	-10,69	-10,693317	-10,690567	0,1
.9/2		-10,690733	-10,690568	0,025
	· · ·	-10,527349	-10,487176	0,2
1f	-10,49	-10,497265	-10,487251	0,1
7/2		-10,487879	-10,487256	0,025
	•	-8,583492	-8,572285	0.2
01	-8.57	-8.575098	-8.572304	0.1
13/2		-8.572474	-8,572306	0.025
		-8,447745	-8.357201	0.2
2n	-8.35	-8.378148	-8,355281	0.1
		-8.356447	-8.355006	0.025
		-8,119280	-8.077833	0.2
1f	-8.08	-8,088241	-8,077913	0.1
5/2		-8.078562	-8.077918	0.025
		-7.5064631	-7.413110	0.2
2n	-7.41	-7.436325	-7.413030	0.1
-F1/2	· · · · -	-7,414464	-7.413008	0.025
		-3,965544	-3,925920	0.2
10	-3 93	-3,935867	-3,925998	0.1
¹⁹ 9/2	5,55	-3,926618	-3,926003	0.025
		-2 808201	-2,797055	0.2
01	-2 80	-2,799853	-2,797074	0.1
11/2		-2,797244	-2,797076	0.025
		-1 894862	-1,883353	0.2
0.1	-1 88	-1 886242	-1,883373	0.1
15/2	-1,00	-1 8835487	-1 883375	0 025
	·	-2 1/6201	-2 071750	0,025
24	-2 07	-2,140301	-2,071940	0,2
245/2		-2,090200	-2,071940	0,025
L	1	-2,0/3092	-2,011951	0,025

Продолжение табл.4

Cooron	Эн	'n		
ние	расчет ^{/19/}	0(h ²)	0(h ⁴)	
36	-1.44	-1,546283	-1,437406 -1,438099	0,2 0,1
1/2	-,	-1,439796	-1,438130	0,025
1g _{9/2}	-0,77	-0,804275 -0,777020 -0,768536	-0,767891 -0,767965 -0,767970	0,2 0,1 0,025
2d _{3/2}	-0,78	-0,843417 -0,796365 -0,781810	-0,780674 -0,780830 -0,780840	0,2 0,1 0,025

рассматривается энергия соответствующего связанного состояния. В таблице 4 приводится сравнение расчетов, полученных с использованием сплайн-схемы точности O(h⁴) (программа EVSA4), схемы МКР порядка O(h²) и результатов работы^{/19/} для каждого связанного состояния, приведенного в первом столбце таблицы. Первая строка каждой графы соответствует расчету на сетке с шагом h=0,2 (число узлов сетки M=350), вторая - на сетке h=0,1 (M=700), третья - h=0,025 (M=2800). Таблица наглядно демонстрирует преимущества схемы повышенного порядка точности O(h⁴) перед обычной $O(h^2)$: вычисления на сетке с шагом h=0,2 по схеме $O(h^4)$ по точности не уступают вычислениям по схеме O(h²) на сетке с шагом h=0,025. А это означает экономию оперативной памяти ЭВМ в 8-10 раз и примерно такую же экономию машинного времени при одинаковой точности вычислений.

> Таблица 5. Фазы рассеяния δ для потенциала Морзе при x ∈ [-5.0,35.0] на последовательности

вдвое	CL	ущающихся	Ce.	 •
			5 1	

ĸ	δ аналитич.	δ _h (h=0,1)	δ _{h/2}	δ _{h/4}	σ
10-4	-0,000655936	-0,0006559369	-0,0006559359	-0,0006559358	17,6
0,08	-0,5209912	-0,52099155	-0,52099074	-0,52099069	16,2
0,10	-0,6486725	-0,64867312	-0,64867213	-0,64967207	16,5
0,14	-0,8989100	-0,89891168	-0,89891036	-0,89891028	16,5
0,20	-1,258328	-1,2583286	-1,25832693	-1,2583268	17,0

ПРИМЕР 5. Задача рассеяния (13)-(14) с потенциалом Морзе, в котором параметры выбраны следующим образом: α=0,67; D=0,104; x=2,09; M=8,876. Как и в примере 3, расчеты сделаны на отрезке [-5,30]. В таблице 5 приведены значения фазы рассеяния на последовательности сеток.

В дальнейшем предполагается включить в программу EVSA4 блок автоматического выбора границы сетки Δ_h и шага h в зависимости от заданного значения точности ε , блок автоматического определения начального приближения к решению задачи, а также предусмотреть обработку и представление результатов в графическом виде.

В заключение авторы хотели бы выразить благодарность Т.П.Пузыниной и Т.А.Стриж за полезные обсуждения .

ЛИТЕРАТУРА

- 1. Ландау Л.Д., Лифшиц Е.М. Квантовая механика. М.: Наука, 1974.
- Комаров И.В., Пономарев Л.И., Славянов С.Ю. Сфероидальные и кулоновские сфероидальные функции. М.: Наука, 1976.
- Fox L. et.al. In "Topics in numerical analysis". Acad. Press, London-New York, 1973, p.93.
- 4. Cayford J.K. et.al. J.Comput.Phys. 1974,16,p.259.
- 5. Пузынин И.В., Пузынина Т.П., Стриж Т.А. ОИЯИ, P11-87-332, Дубна, 1987.
- Абрашкевич А.Г., Касчиев М.С., Пузынин И.В. ОИЯИ, P11-88-744, Дубна, 1988.
- Завьялов Ю.С., Квасов Б.И., Мирошниченко В.Л. Методы сплайнфункций. М.: Наука, 1980.
- 8. Жанлав Т., Пузынин И.В., Ракитский А.В. ОИЯИ, P11-88-823, Дубна, 1988.
- Бояджиев Т.П., Жанлав Т., Пузынин И.В. ОИЯИ, Р5-89-423, Дубна, 1989.
- 10. Гавурин М.К. Изв.высш.уч.зав. Математика, 1958, т.5, 6, с. 18.
- 11. Жидков Е.П., Макаренко Г.И., Пузынин И.В.- ЭЧАЯ, 1973, т.4, 1, с. 127.
- 12. Ермаков В.В.,Калиткин Н.Н.- ЖВМ и МФ,1981,т.21,2,с.491.

- Жанлав Т. В кн.: Приближение сплайнами (вычислительные системы, вып.106) ИМ СО АН СССР, Новосибирск, 1984, с.25.
- 14. Жидков Е.П. и др. ОИЯИ,Р5-9512,Дубна,1976.
- 15. Пузынин И.В. ОИЯИ, 11-12016, Дубна, 1978.
- 16. Bailey P.B. SLEIGH An Eigenvalue-Eigenfunction Code for Sturm-Liovelle Problems. SAND-2044, Sandia Lab., 1978.
- 17. Пузынин И.В., Пузынина Т.П. В сб.: Алгоритмы и программы для
- решения некоторых задач физики. КFKI-74-34,Будапешт,1974,с.93.
- 18. Пономарев Л.И.,Пузынин И.В.,Пузынина Т.П. ОИЯИ Р4-6256, Дубна,1972; ОИЯИ,Р4-6919,Дубна,1973; ЖЭТФ,1973,Т.65,С.28.

19. Vertse T. et.al. - Phys. Rev. C, 1988, v. 37, 2, p. 876.

Рукопись поступила в издательский отдел 1 ноября 1990 года.