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fperyrn M. H p;p. 
06 annpoKcHMa~HH HennHeHHhIX rpaHHqHbIX 
HHTerpanbHhIX ypaBHeHHH p;n.H KoM6HHHpoBaHHoro 
MeTop;a 

Ell-89-442 

PaccMa TPHBaIOTCH HennHeHHbie rHY, Bo3HHKaIOII\He npn perneHHH 
HenmreHHblX 3ap;aq MarHHTOCTa THKH B KOM6HHHPoBaHHOH nocTa
HOBKe p;n.H HeorpaHnqeHHOH o6nacTH. Ha ocHoBe MeTop;a ranep-
KHHa H3yqa10TC.fl annpoKCHMa~HH BO'.-iHHKalOII\HX orrepaTOPHblX ypaB
HeHHH. PaccMaTpHBaeMwe rpaHnqHbie orrepaTOPbl o6nap;aIQT CBOH
CTBOM CHnbHOH MOHOTOHHOCTH, JlnnrnHT~-HerrpepbIBHOCTH, noTeH-

' ~HanbHOCTH H HMeIOT CHMMeTpHqHyIO npOH3BO,l];HYJO faTo. Ha OCHO
Be 3THX CBOHCTB nonyqeHbl o~eHKH rrorpernHOCTH ranepKHHCKHX 
npu6nIDKeHHH B npocTpaHCTBax Co6oneBa p;po6Horo nop.Hp;Ka Ha 
COOTBeTCTBYJOII\HX IIOBepXHOCT.fIX. PaCCMOTpeHbl ,ll;BYMePHblH H 

, TpexMePHhIH cnyqaH. lfayqeHbI BonpocbI cxop;HMoCTH HTepa~HoH
Hhrx rrpo~eCCOB perneHH.fI B03HHKaIOII\HX ,l];HCKpeTH3HPOBaHHbIX CHC
TeM ypaBHeHHH .-

Pa6oTa BbinOnHeHa B Jla6opaTopHH BbJqHcnHTenbHOH TeXHHKH 
H aBTOMaTH3a~HH OlliIH. 

IIpenpHHT 06'Le.lU{HeHHOro HHcrHTyTa RAepHblX uccne.a;oBaHHH. ,Uy6ua 1989 

I v 
Gregus M. et al. Ell-89-442 
On Approximation of Nonlinear Boundary 
Integral Equations for the Combined Method 

The nonlinear boundary integral equations that arise in 
research of nonlinear magnetostatic problems are investi
gated in combined formulation on an unbounded domain. Ap
proximations of the derived operator equations are studi
ed based on the Galerkin method. The investigated boundary 
operators are strongly monotone, Lipschitz-continuous, po
tential and have a synnnetrical Gateaux derivative. The er
ror estimates of the Galerkin's approximation in Sobolev 
spaces of fractional powers are obtained using the above
mentioned properties of the operators, too. The problem 

'.-has been studied on surfaces in two and three-dimensional 
spaces. We answer also some questions on convergence con
nected with the discretized systems of equations. 

The investigation has been performed at the Laboratory 
of Computing Techniques and Automation, JINR. 
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1 . INTRODUCTION 

This paper is concerned with some problems that appear in 
the process of solving quasilinear elliptic equations in an 
unbounded domain with a bounded domain.of nonlinearity. One 
of the problems is how to approximate solutions taking into 
account the boundary conditions at infinity. Different methods 
were devised to solve this problem 11•121 • One of the most ge
ne.ral approaches consists in the coupling of the boundary ele
ment method and the finite element method 11

•2 •31• Though, a 
number of variants exist in the frame of this concept. 

We will discuss the questions of approximation of nonlinear 
operator equations for the trace of the unknown function on 
an auxiliary boundary (enveloping the domain of nonlinearity) 
by the Galerkin method. The equations are formed using a spe
cial class of the Poincare-Steklov operators 191 • We also men
tion the iterative methods of solving the discretized equa
tions.The rate of convergence of the given iterative processes 
for· the mentioned class of equations does not depend on the 
discretization step. At the end we give error estimates of the 
Galerkin approximations for some spline spaces that are defi
ned on the selected auxiliary surface in Rn, n = 2, 3. 

2. MATHEMATICAL FORMULATION OF THE PROBLEM 

We suppose that O 1c R 3 is a bounded domain with Lipschitz 
boundary r 1 (it corresponds to the nonlinearity region), 0 is 
an auxiliary domain with Lipschitz boundary r and 0 1~ 0 .. 

The function µ(x, t) is given and fulfills some or all of 
the following conditions (with x~ O 1 , t,r ~ [O, oo )): 

µ(x,t}l-µ(x,r)r~m(t-r), t~r, m>O, 

Iµ (x, t) t - µ (x, r) r I ::; MI t - r I ~ 

( :t µ (x, t) t I $ M • 

L_et g0 denote the Robin potential on the 
the following function spaces: W2

1 (0) = V 
• go 

,<""- --~~- _.a..:e: :-:&¥re: ,.,C.J!G -~ 

:I C:tUElilit'lliit,il mic'i1.rt1"1 \ 
j OO~f_WaK B{CMe!ct;nueO 
! ~JfblCTfiHA 
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(2) 

(3) 

boundary r. We use 
is the subspace 

.1 



of functions u i;,; Wi(n) with the property that on r is their 
trace orthogonal to g0 , i.e. (y

0 
u, g

0
) = 0, W i12 (0 = X is 

· 112 ,go 
the subspace of functions u i;,; W2 {r) orthogonal to g 0 and 
w2~{ 2 _{0 is the subspace of functions u ~ w;112 (0 orthogonal 
to unity. 

In analogy with the Dirichlet operator Yo 11!1 the trace ope
rator with the domain of definition V, Yo g: V ➔ X is a li-

• 0 

near continuous operator, too. Let us suppose that a linear 
operator a1 i;,; (X ➔ X*) is selfadjoint and positively defi
nite, i.e. Vu , v i;,; X : 

(G
1
u,v)_=(u, G

1
v), (G u,u) ~ m

01
lli.tll~, m

01 
>0. (4) 

In the boundary problem that we will investiga_te in gene
ral form, it is necessary to find a function u i;,; V, satisfy
ing the integral identity: 

s a 
("; ai(x,w)-2...dQ + a(G

1
y0 u,y0 77) = f t/Jy

0
77ds + f3 fq(s)y

0
77(s)ds, 

n 1- 1 ax. [; r 
u 1 ! (5) 

,., -1/2 
for arbitrary 77 c:;; V. The functions t/J i;,; W2, 1 (r1 ) and q i;;;_ 

i;;;_ W21(2(o, and also the numbers a ;:;:. 0, f3 ;:;:. 0 and coefficients 
ai(x: w), w = grad u, i = l, 2, 3 are given. By V we denot"e 
the space V, or the space fl 1 (n). 

If we· set a= 1, f3 = 0, f/ =V and G.1 =L-1(E + K), with in
tegral operators L,K defined by the formulas 

1 cos(rpM'nP) 
Ku= - f ----u(P) dup , 

211 r Ir PM I 2 
(6) 

Lv = -1
- r Ir 1-1 v(P) dup (7) 

211 r PM 

P,M c:;; r, and lrPMI · is the length of the vector rPM defined 
by the segment PM, then we obtain combined magnetostatic equa
tions in general form. The solution of this problem can be 
harmonically extended onto all k3 under the condition that 

lti(x) I 5 0 (_!__), Ix I ➔ "" • If we set a = 0, f3 = l, V = V, we 
Ix! - · 1 

get.the Neumann problem, and for V = H (0) we get the homoge-
neous Dirichlet problem. There holds the following theorem. 

Theorem 2.1. Assume that µ(x, t) fulfills the conditions 
(1), (2). Then the boundary value problem (5) of the Dirich-

·2 

,,. 

:) 

let, Neumann, or COn.!,bined ( a = 1, f3 = 0, V = V ) type has a 
unique solution u i;,; V . 

The nonlinear Poinca-r'e-Steklov operator S: X * ➔ X is defi -
ned by the relation 18

• 
101 

(Sq , 77) = ( Yo u, 77) 'It 11 · i;;;_ X * , 
,go 

(8) 

where Yo · ·is the trace of the solution of the Neumann 
,go 

problem (5) on r. 
Theorem 2.2. Suppose there hold the conditions (1), (2). 

Then the operators-: X ➔ X* is potential, Lipschitz-conti
nuous and strongly ~pnotone. If the condition (3) is fulfil
led, the operator S is Gateaus differentiable and there 
holds the estimate 

((S- 1 )'(z)u,u) ~M llull 2
, 

X· . 
(9) 

and if the fu~ction t ➔ L(µ(x,t)t) is continuous for alat 
most all xi;,; n, then the operator (S-1

)' is symmetric and po-
sitively definite. 

3. THE DISCRETIZATION METHODS 

The properties of the operator G = (E + K)- l L describes 
Lemma 3.1. The norm llvll~ = (Gv, v), v c:;;X* is equivalent 

to the norm of the space x~ the norm II ul! 2 _1 = ca-1u, u)' 
. a . 

y i;,; X is equivalent to the norm II • II x , and:,the operator 
.is symmetric. 

For a = 1, f3 = 0, V = V the equation (5) is equivalent to 
the operator equation 

-1 -1 
<llu = S u + G u =-0, u i;,; X. (10) 

According to Theorem 2.2 <ll is Lipschitz-continuous and 
strongly monotone and therefore the equation (10) has a ~ni
que solution u * i;,; X • 

We will study a finite dimensional approximation of the 
· operator equation (10), thus creating new equations, and for
mulate a theorem on the convergence of the iterative proces
ses that solve the created equations. 

·Let X n C X be a linear subspace in X wit;h the induced norm, 
and hi, ••• , hn complete, linearly independent system of base 
functions in X n· The operator In i;;; L(X n ➔ X) is the inclu-

3 



sion operator and it's adjoint is the operator Iri (;; L (X* ➔ X~ ). 
We will study a system of equations with Galerkin type solu
tion Un(;; Xn: 

-1 -1 . 
(S u n' h 1 ) + (G u n• hi) = 0, 1 = 1 , ... , n , (11) 

that, following 191 , can be written as an operator equation 
in X n: 

<llnun=O, <lln=l~<llln' <lln:Xn ➔ X~ (12) 

The,-identity IIInunll=llun!I implies 191 that the properties 
of the operator~ are transferred to <lln. It is not difficult 
to prove 171 the following assertion on the error estimate of 
the solution un: · 

Lemma 3.2. Assuming that the conditions (1), (2) are ful
filled, the equation (12) has a unique solution, such that 
there holds an estimate 

11 u n - u * 11 X _;;: 3 : inf 11 v - u * 11 X 
vc;;;x n 

(13) 

Next we outline the iterative process to solve equation 
(12). Equivalent norms in Xn and X~ are defined 171 via the 
operator 11 a-l In= ~ n • · 

Theorem 3.1. Suppose the conditions (1), (2) are fulfil
led. Then for r c;:; (0,2Mqi1 ) the iterat.ional process 

· [ un,i -un,i-1] 
,1n . r =-<llnun,i-1' i=l,2, ... (14) 

converges to the solution Un(;; X of equation (12) at the rate 

rq i 

llun,i -unll :S ~ll<llun,O llx*' 

w~ere_q = max{~- mwr, 1-M<flr.l, for arbitrary initial appro
ximation u o (;; xn. n, -1 · 

It is easy to see that for r = 2(M<1J+ m<IJ) we get q(r) = 
= (M <Ii- m<ll) (M<ll + m<ll )-1 • Here rn<ll and M<ll are constants of strong 
monotonicity and Lipschitz-continuity of the operator <Ii. 

Remark 3.1. Since the operator s- 1 is potential, equation 
(10) can be solved also by gradient methods (like the method 
of'steepest descent of the method of conjugate gradients). 

If we ~et ~ n = ¢~ (u n,i 
O
), we get the modified Newton-Kan-

torovich method, and for r = 1, If = ¢ ' (u 
1
. 1 ) we get the 

t1 n n n, -

-4 

', 

() 

[\ 
lj 

Newton method. Local convergence of these methods follows 
from the properties of the operator <Ii. Nonlocal convergence 
of newtonian processes 'is given by the next th~orem /13/ • 

Theorem 3. 2. Suppose that the function t ➔ _a.a(µ (x, t) t) • t 
t ~ [ 0, oo) , is differentiable in t for almost all x (;; 0 

1
• Then 

the continuous Newton method 

au -1 a; =-[<ll~(u(r))] <lln (u(r)), 'u(O) = u 0 (;; Xn, u(r) (;;Xn, . (15) 

converges to u* for arbitrary initial approximatio:r:i u 0 (;; X n' 
Note that the use of equation (11) is connected with cer

tain inconveniences in practice. Each part is therefore modi
fied in such manner, that we obtain a constructive way of com
puting coefficients of the algebraic system (12). Pertaining 
to the first addend, it is possible to use finite-element ana
logue of the Poincare-Steklov operator s-1 for suitable trian
gulation of the domain o118~ Operator a-1 is usually approxi
mated by the collocation method and then the corresponding 
inner and outher equations are "glued" together in a certain 
set of points on the boundary r . However, the questions of 
convergence of approximations of this type for the combined 
problem still do not have strict theoretical foundations 121 • 

4. ERROR ESTIMATES 

Here, sp~cific error estimates of the Galerkin method for 
equation(ll)are given assuming th~~ the boundary r is a 
smooth surface. Suppose that for n = 2, or· 3 the boundary r 
is a simply connected surface (manifold) of class C00

, and 
Ha (r), a~ 0 is Sobolev space of fractional degree 1111 a. 
· The family of subspaces Xn=S~•r , n = 3 (R 3

) is ·defi
ned121 in accordance. with the choice of regular family 
s!• r c Hr (r) of boundary finite-element spaces 1201 • Letter 
his a parameter of triangulation, and r denotes the smooth- . ✓ 

ness of piece-wise polynomial elements of order k - 1. . r · 

Note that the solution u * of equation ( 11), n = 2, 3, is an'i · 
element of Hu (r) , u > 1/2. Approximation properties 12• 201 

k r -of the system Sh• , n = 3 imply , . , 
Theorem 4.1. For arbitrary f, a(;; R, such that f::. r ~ ··k,, 

f ~ u :S k for u* (;;Ha, a ~ 1/2, there holds the estimate 

Jiu -u* II $ ch
0

-
1 Jlu*JI" 

n He (O Hu(f) 

where un is a solution of equation (11), n = 3. 
! 

(16°) 
' I 

,5 
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In the case n = 2, we use 1141 the family of spaces X 0 = 
= Sf (nh) of boundary elements on r , corresponding to the space 
of 1-periodic, (d-1)-continuously·differentiable splines of 
degreed on r, where the grid-region Oh= {ti I i = 0, ••• , NI 
satisfies on r the condition t 0 = tN with a regular step h = 
= I t 1+ 1 - ti I , i = 0, ••• , N. The approximation properties 

1141 

of the system S~(Oh) imply the following: 
Theorem 4. 2. For arbitrary t, CT t; R such that CT :;,; d + 1 , 

t ~CT, t $ d + 1/2 there holds the estimate 

II il n . -:- u * l lH t $ ch CT - t 11 u * 1 IH CT , 
(17) 

CT where u * ~ H {r), and u n is a solution of the equation ( 11). 
Notice that in the case of piece-wise linear elements, i.e. 

k =. d +.l = 2, r = 1, for u* = H 2 (r), i.e. CT= 2 there holds 
an estimate 

lliln - u* IIHt::; ch
2
-tll u*IIH 2 , (18) 

where O s; t ::; 3/2 for n = 2 and O ,:5 t s; 1 for n = 3. 

5. NUMERICAL EXPERIMENTS 

As an illustration, results of a numerical experiment show
ing the convergence in_h of the problem (10), defined on a 
boundary of a parallelepiped Il, are given 1191 using finite
differencies approximation of the operator s-1 and an appro
ximation of K and L by the collocation method .on piece-wise 
constant base functions, for a-1 = L -l (E +K). The boundary 
value problem in R 3 , X = (x,y, z) ~ R 8 

6U =p(X). U(oo) = 0, u(X) = o(-½-), IXI ➔ 00
'. (19) 

!XI 
is transformed into the equation (10) defined on the boundary 
r =an. The function p(X) is given by 

{

C(X), x~n
1 

cil=lXllxl$1.5, IYl":s;0.5, lzl~0.51, 

p(X) = 
0 , X t;; R 3\n1, J C (P) dP = 0 

Il1 

and exact solution of (19) is u* (X) = _!_ f .C(P) dP. 
411 IX - Pl. 

Numerical experiments were carried out on a sequence of 
three grids h 1 (8,~,8) ➔ h 2 (16,16,16) ➔ h8 (32,32,32) on the 

6 

'hk 

Kh 
k 

8x8x8 

0.0399 

Table 

16x16x16 32x32x32 

0.0195 0.0089 

boundary of a parallelepiped Il. The results of computations, 
given for 6h = max luh -u*I, i = 1, 2, 3 in the Table, 

1 an 1 

clearly show the O(h) approximation. 
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