

ССОБЩСНИЯ Сбъединенного института ядерных исслодований дубна

P11-86-576

А.К.Попов

АВТОКОЛЕБАНИЯ МОЩНОСТИ ИМПУЛЬСНОГО РЕАКТОРА

ПОСТАНОВКА ЗАДАЧИ

В импульсном реакторе периодического действия из-за отрицательной мощностной обратной связи возможно возникновение режимов с усиленными колебаниями мощности, в том числе и автоколебательного типа ^{/ 1,2/}.

В настоящей работе исследуются два вида автоколебаний. Первый - автоколебания с частотой, в два раза меньшей частоты следования импульсов мощности; второй - колебания, в которых помимо составляющей с указанной частотой присутствует составляющая с частотой, в четыре раза меньшей частоты следования импульсов мощности.

УРАВНЕНИЯ ДИНАМИКИ И СТРУКТУРНАЯ СХЕМА ИМПУЛЬСНОГО РЕАКТОРА

Уравнения кинетики импульсного реактора периодического действия сводятся к следующей системе уравнений ^{/3/}:

$$P(t) = P_{\mu}(t) + P_{c}(t)$$
 /1.1/

$$P_{\mu}(t) = \sum_{n=0}^{\infty} E_{n} \delta(t - nT_{\mu})$$
 /1.2/

$$P_{\mathbf{p}}(t) = k_{\mathbf{p}} S(t) \qquad (1.3)$$

 $\mathbf{E}_{n} = \mathbf{M}_{n} \left(\boldsymbol{\epsilon}_{mn} \right) \mathbf{S}_{n} \tag{1.4}$

$$S(t) = \sum_{i} S_{i}(t)$$
 /1.5/

$$T_{i} \frac{dS_{i}(t)}{dt} + S_{i}(t) = \mu_{i}P(t), \qquad (1.6)$$

где i = 1,..., I. Здесь t - время; T_{μ} - период следования импульсов мощности; P - мощность реактора; P_{μ} , P_{Φ} - импульсная и фоновая составляющие мощности реактора, обусловленные соответственно выделением энергии в импульсах и в промежутках между ними; E_n - энергия, выделяемая в течение n-го импульса мощности; i, I - соответственно номер группы и число групп запаздываю-

щих нейтронов; S_i , S - соответственно мощность источников запаздывающих нейтронов группы і и суммарная; $S_n = S(t=n\,T_\mu=0)$ - мощность источников запаздывающих нейтронов перед началом развития n-го импульса мощности; M_n - фактор умножения в n-м импульсе, зависящий от максимального значения реактивности ϵ_{mn} , которое достигается в n-м импульсе; $k_{\Phi} = \beta/|\epsilon_{\Phi}|$ - доля энергии фона, т.е. энергии, выделяемой между импульсами, от всей энергии, выделяемой в течение периода T_μ . Здесь β - суммарная доля запаздывающих нейтронов всех групп, ϵ_{Φ} - реактивность фона, т.е. реактивность в промежутке между импульсами; T_i - постоянная времени i-той группы ($T_i=1/\lambda_i$, где λ_i - постоянная распада источников запаздывающих нейтронов i-той группы); μ_i - доля запаздывающих нейтронов i-той группы от суммарной.

фактор умножения хорошо описывается экспонентой

$$M_{n} = A \exp(B_{\ell_{mn}}) = A \exp(x_{n}).$$
 (2/

Здесь A, B = $1/\beta_{\mu}$ - константы, причем $\beta_{\mu} = 1/B = [M_n/(\frac{dM_n}{d\epsilon_{mn}})] \epsilon_{mn} = \epsilon_B^0$

- так называемая импульсная доля запаздывающих нейтронов $^{\prime 4\prime}$; $x_n = B_{\epsilon_{mn}} = \epsilon_{mn'} \beta_{\mu}$ - максимальное значение реактивности в n-m импульсе, выраженное в долях β_{μ} .

Влияние отрицательной обратной связи ^имощность-реактивность³⁹ описывается следующими уравнениями ^{/5,6/}:

$$\tau_{0} \frac{d\nu(t)}{dt} + \nu(t) = k_{0}P(t)$$

$$x_{n} = g_{n} - \nu_{n} ,$$
/3.1/
/3.2/

где $\nu(t)$ - текущее значение реактивности мощностной обратной связи в долях $\beta_{\rm H}$, обусловленной разогревом реактора, а $\nu_{\rm n}$ = = $\nu(t = n \, {\rm T}_{\rm H} - 0)$ - ее значение в момент времени, предшествующий развитию n-го импульса мощности; g_n - задающее значение реактивности в долях $\beta_{\rm H}$ в момент развития n-го импульса мощности, обусловленной органами управления; k_o, r_o - коэффициент передачи и постоянная времени мощностной обратной связи.

Дать более точное, чем /3.1/ описание мощностной обратной связи, затруднительно $^{/5,6/}$. Учитывая это, целесообразно ввести упрощение при описании запаздывающих нейтронов и рассматривать зместо шести групп /1 = 6/ две эквивалентные /1 = 2/ с относительными долями μ_1, μ_9 и постоянными времени $T_1, T_9 ^{/3/2}$.

При исследовании импульсного реактора в качестве выходной величины принимают не полную мощность реактора, а мощность, обусловленную только импульсами. Зависимость S(t) от $P_{\mu}(t)$ удобно представить системой уравнений /4/, которая вытекает из уравнений /1.1/, /1.3/, /1.5/, /1.6/:

$$\frac{dS'_{i}(t)}{dt} + S'_{i}(t) - \mu'_{i}k'P_{\mu}(t), \quad S(t) = \sum_{i=1}^{I} S'_{i}, \quad /4/$$

а зависимость $\nu(t)$ от $P_{\mu}(t)$ - системой уравнений /5/, содержащей I + 1 дифференциальных уравнений, поскольку зависимость $P_{\mu}(t)$ от P(t) выражается, как следует из системы /1/, дифференциальным уравнением 1-го порядка:

$$\tau_{i} \frac{d\nu_{i}'(t)}{dt} + \nu_{i}'(t) = k_{0}\gamma_{i}k'P_{\mu}(t), \quad \nu(t) = \sum_{i=0}^{I}\nu_{i}'(t), \quad /5/$$

Здесь k'= 1/(1 – k $_{\Phi}$) - коэффициент передачи от мощности импульсов к полной мощности реактора, τ_i , μ'_i /где i = 1,..., I / - постоянные времени и коэффициенты передачи, зависящие от T_i , μ_i , k $_{\Phi}$; γ_i /где i = 0,..., I / - коэффициенты передачи, зависящие от

$$T_{i} = \mu_{i}$$
 /где $i = 1, ..., I$ /, $r_{o} = k_{\Phi}$, причем $\sum_{i=1}^{I} \mu_{i}^{*} = 1, \sum_{i=0}^{I} \gamma_{i} = 1.$

Для последующего анализа удобно представить импульсный реактор как дискретную по времени систему с безразмерными переменными. Соответствующие n-му импульсу мощности энергия $e_n = E_n / E^0$ и мощности источников запаздывающих нейтронов $s_{in} = S_{in} / S^0$ и $s_n = S_n / S^0$ рассматриваются в долях от их базовых значений E^0 и S^0 . В качестве базовых принимаются значения переменных, соответствующие базовому режиму, т.е. режиму работы реактора при каком-либо выбранном уровне средней мощности со стабильными импульсами. В результате для дискретных моментов времени уравнения динамики приводятся к следующей системе уравнений:

$$e_n - exp(y_n)$$
 /6.1/

$$n = \Delta x_n + z_n$$
 /6.2/

$$z_n = \ln s_n$$
 /6.3/

$$s_n = \sum_{i=1}^{n} s_{in}$$
 (6.4/

$$s'_{in} = (s'_{in-1} + \frac{e_n}{\sigma_{so}} - \frac{\mu'_i}{\tau_1}) \exp(-\frac{T_{\mu}}{\tau_i})$$
 /6.5/

$$Ax_n = g_n - \nu_n \qquad (6.6)$$

$$v_{\rm n} = \sum_{\rm i = 0}^{\rm N} v_{\rm in}^{\prime}$$
 /6.7/

$$v'_{in} = (v'_{in-1} + e_n k_o \bar{P} T_{\mu} \frac{\gamma_i}{\tau_i}) \exp(-\frac{T_{\mu}}{\tau_i}),$$
 /6.8/

$$\sigma_{\rm so} = \frac{{\rm S}^{\rm o}}{{\rm k}'{\rm E}^{\rm o}} = \frac{{\rm I}}{{\rm i}} \frac{\mu_{\rm i}'}{\tau_{\rm i}} - \frac{\exp(-{\rm T}_{\rm M}/\tau_{\rm i})}{1 - \exp(-{\rm T}_{\rm M}/\tau_{\rm i})} .$$
 /7/

Уравнения /6.1/-/6.8/ соответствуют системе автоматического управления с идеальными импульсными элементами, которые преобразуют непрерывные величины в последовательности импульсов с периодом Т_и. При этом каждый импульс пропорционален δ-функции, а его интеграл равен значению входной величины в момент генерации импульса. На рис.1 представлена структурная схема нелиней-

Рис.1. Структурная схема импульсного реактора.

ной импульсной системы, соответствующая уравнениям /6.1/-/6.8/. Звездочкой помечены дискретные функции времени, образованные по следующему типу:

$$e^{*}(t) = 1_{t} \sum_{n=0}^{\infty} e(t) \delta(t - nT_{\mu}) = 1_{t} \sum_{n=0}^{\infty} e_{n} \delta(t - nT_{\mu}).$$
 (8/

Таким образом, функция $e^*(t)$, равная 0 при $t \neq n T_u$ и бесконечности при $t = n T_u$, описывает последовательность импульсов с бесконечно малой длительностью, с бесконечно большой амплитудой и с площадью, равной e_n . В формуле $/8/1_t = 1$ с – коэффициент размерности, e(t) – непрерывная функция времени, представляющая собой огибающую дискретных переменных e_n .

Структурная схема дана в виде нелинейной прямой цепи, линейной цепи отрицательной обратной связи энергия импульса - реактивность и нелинейной цепи положительной обратной связи энергия импульса - мощность источников запаздывающих нейтронов. Импульсные частотные передаточные функции обратных связей $W_s^*(j_\omega)$ и $W_p^*(j_\omega)$ при двух эквивалентных группах запаздывающих нейтронов /1 = 2/ выражаются следующим образом /3/:

где ω - круговая частота преобразования Фурье, s*(j ω), ν *(j ω), e*(j ω) - соответственно фурье-изображения дискретных функций времени s*(t), ν *(t) и e*(t).

В формулах /9/ и /10/ $P = k = {}^{\circ}/T_{\mu}$ - средняя мощность реактора, соответствующая базовому режиму; $\tau_1 = 0.5 b + \sqrt{0.25 b^2 - a}$,

$$\begin{split} \mathbf{r}_{\mathbf{A}\mathbf{e}} &= \mathbf{T}_{1} \mathbf{T}_{2} \mathbf{k}', \quad \mathbf{b} = [\mathbf{T}_{1} + \mathbf{T}_{2} - \mathbf{k}_{\Phi}(\mu_{1}\mathbf{T}_{2} + \mu_{2}\mathbf{T}_{1})] \mathbf{k}'; \\ \mathbf{r}_{2} &= \mathbf{b} - \mathbf{r}_{1}; \quad \mu_{1}' = [\mathbf{T}_{1} - (\mu_{1}\mathbf{T}_{2} + \mu_{2}\mathbf{T}_{1})]/(\mathbf{r}_{1} - \mathbf{r}_{2}); \quad \mu_{2}' = \mathbf{1} - \mu_{1}'; \\ \mathbf{Y}_{1} &= [\mathbf{T}_{1}\mathbf{T}_{2} - \mathbf{r}_{1}(\mathbf{T}_{1} + \mathbf{T}_{2} - \mathbf{r}_{1})]/[(\mathbf{r}_{1} - \mathbf{r}_{2})(\mathbf{r}_{1} - \mathbf{r}_{0})]; \\ \mathbf{Y}_{2} &= [\mathbf{T}_{1}\mathbf{T}_{2} - \mathbf{r}_{2}(\mathbf{T}_{1} + \mathbf{T}_{2} - \mathbf{r}_{2})]/[(\mathbf{r}_{1} - \mathbf{r}_{2})(\mathbf{r}_{0} - \mathbf{r}_{2})]; \quad \mathbf{y}_{0} = \mathbf{1} - \mathbf{y}_{1} - \mathbf{y}_{2} \; . \end{split}$$

АВТОКОЛЕБАНИЯ С ОДНОЙ ЧАСТОТОЙ

.

Анализ линеаризованной модели импульсного реактора показал 2^{2} , что реактор устойчив при средней мощности, меньшей некоторого граничного значения, а при достижении граничного значения в нем возникают колебания мощности с частотой $\omega_{\pi 3}$ где

$$\omega_{\pi} = \pi/T_{\mu}$$
. (11)

Учет нелинейных зависимостей позволяет выявить более сложные процессы. Известно ^{/7/}, что в нелинейных системах с обратными связями при неизменном входном воздействии возможно существование незатухающих колебаний - автоколебаний.

При наличии автоколебаний с частотой ω_{π} энергию импульсов мощности можно представить в виде двух составляющих - постоянной \tilde{e}^* и периодической \tilde{e}^* :

$$e^{*}(t) = e^{*} + e^{*}(t)$$
 /12/

$$\tilde{\mathbf{e}}^{*}(t) = \mathbf{1}_{t} \tilde{\mathbf{A}}_{e} \sum_{n=0}^{\infty} \cos \pi \mathbf{n} \cdot \delta(t - \mathbf{n} T_{\mu}), \qquad (13)$$

где A_e - амплитуда периодической составляющей $e^{*(t)}$. Аналогично в виде постоянной и переменной составляющих представляются и другие переменные. Базовое значение энергии импульса E^o удобно выбрать таким, чтобы постоянная составляющая энергии импульсов в автоколебательном режиме равнялась единице: $e_n = 1$. В этом случае

$$\bar{e}^* = \mathbf{1}_t \sum_{n=0}^{\infty} \delta(t - nT_n).$$
 (14/

0чевидно, что тогда $0 \le A_p < 1$.

Структурная схема импульсного реактора для периодических составляющих показана на рис.2.

Согласно аналогу критерия устойчивости Найквиста для импульсных систем автоколебания с частотой ω_{η} возможны при удовлетворении следующего условия:

$$k_{10} [W_{p}^{*}(j\omega_{\pi}) - k_{20} W_{s}^{*}(j\omega_{\pi})] = -1.$$
 (15/)

Рис.2. Структурная схема импульсного реактора для периодических составляющих переменных с частотой ω_π.

Здесь

$$W_{s}^{*}(j\omega_{\pi}) = \sigma_{s\pi}/\sigma_{so}, \quad W_{P}^{*}(j\omega_{\pi}) = \overline{P} k_{o} T_{\mu} \sigma_{P\pi}, \qquad /16,17/$$
rge

$$\sigma_{s\pi} = -\frac{2}{i} \frac{\mu_{i}}{\tau_{i}} \frac{\exp(-T_{\mu}/\tau_{i})}{1 + \exp(-T_{\mu}/\tau_{i})},$$
 /18/

$$\sigma_{\rm P\pi} = -\frac{2}{\sum_{\rm i=0}^{\rm 2} \frac{\gamma_{\rm i}}{\tau_{\rm i}}} \frac{\exp(-T_{\rm H}/\tau_{\rm i})}{1 + \exp(-T_{\rm H}/\tau_{\rm i})}, \qquad (19/$$

 ${\bf k}_{10}$ - эквивалентный коэффициент передачи экспоненциальной нелинейности для периодической составляющей $\vec{{\bf e}}\,^*(t)$ с частотой ω_π и амплитудой $\vec{{\bf A}}_{\rm e}$:

$$k_{10} = \frac{A_e}{\bar{A}_y} = \frac{2\bar{A}_e}{\ln(1 + \bar{A}_e) - \ln(1 - \bar{A}_e)},$$
 /20/

 k_{20} – эквивалентный коэффициент передачи логарифмической нелинейности для периодической составляющей $\vec{z}\,^*(t)$ с частотой ω_π и амплитудой \vec{A}_{σ} :

$$k_{20} = \frac{\bar{A}_z}{\bar{A}_s} = \frac{\ln(1 + \bar{A}_s) - \ln(1 - \bar{A}_s)}{2\bar{A}_s},$$
 /21/

 A_y, A_s - соответственно амплитуды периодических составляющих $\tilde{y}^*(t)$ и $\tilde{s}^*(t)$.

Формулы /20/ и /21/ получены из уравнений /6.1/, /6.3/-/6.5/. Это поясняют рис.3 и 4, на которых показаны статические харак-

теристики экспоненциальной и логарифмической нелинейностей и обусловленные этими нелинейностями дискретные по времени переменные e_n , y_n , z_n , s_n и их

Рис.3. Статическая характеристика экспоненциальной нелинейности, переменные на ее входе y_n и выходе e_n и их огибающие y(t) и e(t) при колебательном режиме с частотой ω_{π} .

Поскольку

$$\vec{A}_{s} = \vec{A}_{e} |W_{s}^{*}(j\omega_{\pi})| = \vec{A}_{e} |\sigma_{s\pi}| / \sigma_{so}, \qquad (22)$$

Рис. 4. Статическая характерис-

тика логарифмической нелиней-

ности, переменные на ее входе

 s_n и выходе z_n и их огибающие s(t) и z(t) при колебательном

режиме с частотой ω_π .

огибающие e(t), v(t), z(t), s(t)

при автоколебательном режиме. При этом учтено, что при $e_n = = \vec{e}_n = 1$ $s_n = \vec{s}_n = 1$. Это сле-

дует из формул /6.5/,/6.6/ и /7/.

то \mathbf{k}_{20} , как и \mathbf{k}_{10} , являются функцией амплитуды $\check{\mathbf{A}}_{\mathrm{e}}$:

$$k_{20} = \frac{\sigma_{so}}{2\vec{A}_{e} |\sigma_{s\pi}|} \ln \frac{1 + \vec{A}_{e} |\sigma_{s\pi}| / \sigma_{so}}{1 - \vec{A}_{e} |\sigma_{s\pi}| / \sigma_{so}} .$$
 (23/

Условие существования автоколебаний с частотой ω_{π} /15/ с учетом последующих формул сводится к уравнению:

$$k_{10} (P k_0 T_{\mu} \sigma_{P\pi} - k_{20} \sigma_{s\pi} / \sigma_{s0}) = -1,$$
 /24/

из которого следует, что определенной амплитуде автоколебаний \tilde{A}_e будет соответствовать определенное значение средней мощности \tilde{P} :

$$\overline{P} = \frac{(1/k_{10}) - k_{20} \sigma_{s\pi} / \sigma_{so}}{-k_{0} T_{\mu} \sigma_{P\pi}}.$$
(25/

Как следует из зависимостей k_{10} и k_{20} от \bar{A}_e , большей амплитуде \bar{A}_e соответствует меньшее значение k_{10} и большее значение k_{20} . Согласно аналогу критерия устойчивости Найквиста, равенство /24/ соответствует системе, находящейся на границе устойчивости. Из анализа нарушения этого равенства при изменениях амплитуды на малые величины $\pm \Delta \bar{A}_e$ следует, что автоколебания с частотой ω_π и амплитудой \bar{A}_e устойчивы.

Граничное значение средней мощности $\bar{P}_{\rm rp}$, при котором возни-кают колебания с частотой $\omega_{\pi},$ получается из /25/, если положить $\bar{A}_{\rm e} \star$ 0 :

$$\vec{P}_{PP\pi} = \frac{1 - \sigma_{s\pi} / \sigma_{so}}{-k_o T_{\mu} \sigma_{P\pi}}.$$
 /26/

6

Естественно, что формула /26/ повторяет формулу, полученную из анализа линеаризованной модели импульсного реактора 2^{2} .

АВТОКОЛЕБАНИЯ С ДВУМЯ ЧАСТОТАМИ

В отличие от линейной модели анализ импульсного реактора как системы нелинейной показывает, что при достижении некоторого уровня средней мощности помимо колебаний с частотой ω_{π} возникают также колебания с частотой $\omega_{\pi/2}$, где

$$\omega_{\pi/2} = \pi/(2T_{\mu}).$$
 (27/

В этом случае помимо периодической составляющей энергии импульсов мощности /13/ будет присутствовать также периодическая составляющая $\tilde{\vec{e}}^*(t)$. Ее удобно представить в виде суммы косинусоидальной и синусоидальной составляющих:

$$\tilde{\vec{e}}^{*}(t) = \tilde{\vec{e}}_{1}^{*}(t) + \tilde{\vec{e}}_{2}^{*}(t)$$
 /28/

$${\stackrel{*}{e}}_{1}^{*}(t) = 1_{t} \sum_{n=0}^{\infty} C_{1} \cdot \cos \frac{\pi}{2} n \cdot \delta(t - n T_{\mu})$$
 /29/

$$\tilde{e}_{2}^{*}(t) = 1_{t} \sum_{n=0}^{\infty} C_{2} \cdot \sin \frac{\pi}{2} n \cdot \delta(t - n T_{\mu}).$$
 (30/

Здесь C_1 и C_2 - константы, причем $|C_1| = \tilde{A}_{e1}$, $|C_2| = \tilde{A}_{e2}$, где \tilde{A}_{e1} , \tilde{A}_{e2} - амплитуды составляющих $\tilde{\tilde{e}}_1^*(t)$ и $\tilde{\tilde{e}}_2^*(t)$ соответственно.

Рис.5. Автоколебания энергии импульсов мощности при наличии периодических составляющих с двумя частотами – ω_{π} и $\omega_{\pi/2}$. • - e_n, Δ - e_n, O - e_n, \vee · e_{1n}, \Box - e_{2n}.

На рис.5 для режима колебаний с двумя частотами ω_{π} и $\omega_{\pi/2}$ показаны дискретная переменная \mathbf{e}_n и ее составляющие \mathbf{e}_n , $\mathbf{\vec{e}}_n$, $\mathbf{\vec{e}}_{1n}$, $\mathbf{\vec{e}}_{2n}$, а также их огибающие $\mathbf{e}(t)$, $\mathbf{\vec{e}}_{2}(t)$. При вычислении граничного значения средней мощности $\mathbf{\vec{P}}_{\Gamma p \pi/2}$,

при котором возникают колебания с частотой $\omega_{\pi/2}$, константы C_1 и C_2 в формулах /29/ и /30/ следует рассматривать как бесконечно малые величины. Для возникновения составляющей $\tilde{\tilde{e}}^*(t)$ с частотой $\omega_{\pi/2}$ должно удовлетворяться следующее условие:

$$\tilde{\tilde{e}}_{1}^{*}(j\omega_{\pi/2}) [-W_{P}^{*}(j\omega_{\pi/2}) + k_{21} W_{s}^{*}(j\omega_{\pi/2})] k_{12} +$$

$$+ \tilde{\tilde{e}}_{2}^{*}(j\omega_{\pi/2}) [-W_{P}^{*}(j\omega_{\pi/2}) + k_{22} W_{s}^{*}(j\omega_{\pi/2})] k_{11} = \tilde{\tilde{e}}_{1}^{*}(j\omega_{\pi/2}) + \tilde{\tilde{e}}_{2}^{*}(j\omega_{\pi/2}).$$

$$/31/$$

Здесь эквивалентные коэффициенты передачи экспоненциальной и логарифмической нелинейностей для периодических составляющих с частотой $\omega_{\pi/2}$ и с бесконечно малыми амплитудами равны:

$$\mathbf{k}_{11} = \frac{\mathrm{d} \mathbf{e}_{\mathrm{n}}}{\mathrm{d} \mathbf{y}_{\mathrm{n}}} |_{\mathbf{y}_{\mathrm{n}} = \mathbf{y}_{\mathrm{n}} \min} = \mathbf{e}_{\mathrm{n} \min}$$
 /32/

$$k_{12} = \frac{de_n}{dy_n} |_{y_n = y_n \max} = e_{n \max}$$
 /33/

$$k_{21} = \frac{dz_n}{ds_n} = \frac{1}{s_{n = s_n \min}} = \frac{1}{s_{\min}} = \frac{1}{1 - \tilde{A}_s}$$
 /34/

$$k_{22} = \frac{dz_n}{ds_n} \Big|_{s_n = s_n max} = \frac{1}{s_{max}} = \frac{1}{1 + \tilde{A}_s}.$$
 (35/

Импульсные частотные передаточные функции $W_{\rm P}^*({\rm j}\omega_{\pi/2})$ и $W_{\rm s}^*({\rm j}\omega_{\pi/2})$ равны

$$W_{s}^{*}(j\omega_{\pi/2}) = \frac{1}{\sigma_{so}} \sum_{i=1}^{2} \frac{\mu_{i}}{\tau_{i}} = \frac{\exp(-T_{\mu}/\tau_{i})}{j - \exp(-T_{\mu}/\tau_{i})}, \qquad (36/2)$$

$$W_{P}^{*}(j\omega_{\pi/2}) = \vec{P}k_{0}T_{\mu}\sum_{i=0}^{2}\frac{y_{i}}{\tau_{i}} \frac{\exp(-T_{\mu}/\tau_{i})}{j-\exp(-T_{\mu}/\tau_{i})}.$$
(37/

Из /29/ и /30/ следует, что

$$\frac{e_{2}^{*}(j\omega_{\pi/2})}{e_{1}^{*}(j\omega_{\pi/2})} = \frac{C_{2}}{C_{1}} \exp(-j\omega_{\pi/2} T_{\mu}) = -j\frac{C_{2}}{C_{1}}.$$
(38/

С учетом этого из уравнения /31/ вытекает следующее равенство:

$$\frac{C_2}{C_1} = \frac{1 + [W_P^*(j\omega_{\pi/2}) - k_{21} W_s^*(j\omega_{\pi/2})] k_{12}}{j\{1 + [W_P^*(j\omega_{\pi/2}) - k_{22} W_s^*(j\omega_{\pi/2})] k_{11}\}}.$$
(39/

При определенном уровне средней мощности $P_{\Gamma p \pi/2}$ помимо колебаний с амплитудой $\tilde{A}_{e \ \Gamma p}$ и частотой ω_{π} возникают колебания с частотой $\omega_{\pi/2}$. Значения $\tilde{P}_{\Gamma p \pi/2}$ и $\tilde{A}_{e \ \Gamma p}$ вычисляются следующим образом. Задаваясь рядом значений \tilde{A}_e в диапазоне $0 \leq \tilde{A}_e < 1$ и используя формулы /20/, /23/, /25/, /32/-/37/, /39/, для каждого значения \tilde{A}_e вычисляют \tilde{P} и комплексную величину C_2/C_1 . Искомыми значениями $\tilde{P}_{\Gamma p \pi/2}$ и $\tilde{A}_{e \ \Gamma p}$ являются те значения \tilde{P} и \tilde{A}_e , которым соответствует действительное значение C_2/C_1 . Следует отметить, что до какого-то уровня средней мощности возникшие автоколебания с частотой $\omega_{\pi/2}$ будут устойчивыми. В этом нетрудно убедиться, проведя анализ, аналогичный анализу устойчивости

автоколебаний с частотой ω_π и с амплитудой \bar{A}_e . При дальнейшем увеличении \bar{P} характер колебаний становится более сложным.

Пример

Для импульсного реактора с параметрами ИБР-2 для различных значений периода следования импульсов мощности $T_{\rm H}$ были рассчитаны граничные значения средней мощности $\vec{P}_{\rm Гр}\pi$, при которых возникают колебания с частотой ω_{π} , а также граничные значения $\vec{P}_{\rm гр}\pi/2$ и соответствующие им значения $\vec{A}_{\rm e\, \Gammap}$, при которых помимо колебаний с частотой ω_{π} возникают еще и колебания с частотой $\omega_{\pi/2}$. Результаты расчета приведены на рис.6. Значения параметров были приняты следующие: μ_1 = 0,364; μ_2 = 0,636; T_1 = 35,5 c; T_2 = 2,72 c; k_{Φ} = 0,06; k_0 = 0,01 $\beta_{\rm H}/\kappa$ BT; τ_0 = 10 c.

Рис.6. Зависимость граничных значений средних мощностей $\vec{P}_{rp\pi}$, $\vec{P}_{rp\pi/2}$ и амплитуды автоколебаний энергии импульсов мощности \vec{A}_{erp} от периода следования импульсов T_{μ} . \vec{P} - в MBт, T_{μ} - в с.

В таблице для этих же значений параметров и для случая $T_{\mu} =$ = 0,2 с приведены расчетные последовательности значений энергии импульсов e_n для автоколебательных режимов. При \vec{P}_{nm}

 $< \vec{P} < \vec{P}_{rp\pi/2}$ периоду колебаний соответствуют два импульса, при $\vec{P}_{rp\pi/2} < \vec{P} < \vec{P}_{rp\pi/2}$ – четыре /рис.5/. По достижении некоторого уровня мощности $\vec{P}_{rp\pi/2}$ жарактер колебаний становится более сложным.

ЗАКЛЮЧЕНИЕ

Проведенный анализ показал, что в импульсном реакторе вследствие нелинейной зависимости энергии импульса мощности от реактивности и мощности источников запаздывающих нейтронов возможны устойчивые автоколебания энергии импульсов мощности. В работе получены условия возникновения и существования автоколебаний с частотой, в два раза меньшей частоты следования импульсов мощности. Получены также условия, при которых в колебаниях помимо составляющей с указанной частотой возникает составляющая с частотой, в четыре раза меньшей частоты следования импульсов мощности. Таблица

Автоколебания энергии импульсов мощности

$T_{\mu} = 0, 2$	2 c; P _{rpπ}	= 10,97	$AB_{r}; \tilde{P}_{rp\pi/2} = 13$, 86 МВт	
Р, MBт	e _n					
	n = 1	n = 2	n = 3	n = 4	n = 5	
11,52	1,38	0,62	1,38	0,62	1,38	
12,07	1,51	0,49	1,51	0,49	1,51	
12,62	1,6	0,4	1,6	0,4	1,6	
13,17	1,67	0,33	1,67	0,33	1,67	
14	1,6	0,346	1,86	0,208	1,6	
14,17	1,55	0,372	1,9	0,188	1,55	
14,31	1,52	0,393	1,93	0.173	1,52	

ЛИТЕРАТУРА

- 1. Шабалин Е.П. ОИЯИ, Р11-85-776, Дубна, 1985.
- 2. Попов А.К. ОИЯИ, 13-85-840, Дубна, 1985.
- 3. Попов А.К. ОИЯИ, 13-85-839, Дубна, 1985.
- 4. Бондаренко И.И., Стависский Ю.Я. Атомная энергия, 1959, т.7, вып.5, с.417.
- 5. Денисов В.Д., Попов А.К., Руденко В.Т. ОИЯИ, Р13-81-656, Дубна, 1981.
- 6. Пепёлышев Ю.Н., Попов А.К., Рогов А.Д. ОИЯИ, Р13-83-471, Дубна, 1983.
- 7. Бесекерский В.А., Попов Е.П. Теория систем автоматического регулирования. "Наука", М., 1975, с.768.

Рукопись поступила в издательский отдел 22 августа 1986 года.

	НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?		Попов А.К. Р11-86-576		
Вы	можете получить по почте перечисленные ниже кн	иги,	Автоколебания мощности импульсного реактора		
	если они не были заказаны ранее.				
Д2-82-568	Труды совещания по исследованиям в области релятивистской ядерной физики. Дубна, 1982.	1 р. 75 к.	 в целях аналитического исследования динамики импульсного реактора периог дического действия получены условия возникновения автоколебаний мощности, обусловленных нелинейной зависимостью энергии импульса мощности от реактив- ности и мощности источников запаздывающих нейтронов. Показано, что при сред- ней мощности реактора, равной первому граничному значению, в нем возникают колебания с частотой, в два раза меньшей частоты следования импульсов мощ- ности. При большем значении средней мощности в реакторе наблюдаются устой- чивые автоколебания, амплитуда которых определяется уровнем средней мощности. При средней мощности, равной второму граничному значению, в колебаниях поми- мо составляющей указанной частоты возникает составляющая с частотой, в че- тыре раза меньшей частоты следования импульсов мощности. Возникшие колеба- ния с двумя частотами также устойчивы. 		
Д9-82-6 64	Труды совещания по коллективным методам ускорения. Дубна, 1982.	3 р. 30 к.			
ДЗ,4-82-704	Труды IV Международной школы по нейтронной Физике. Дубна, 1982.	5 p. 00 x.			
Д11-83-511	Труды совещания по системам и методам аналитических вычислений на ЗВМ и их применению в теоретической физике. Дубна, 1982.	2 р. 50 к.			
Д7-83-644	Труды Международной школы-семинара по физике тяжёлых ионов. Алушта, 1983.	6 р. 55 к.	Работа выполнена в Лаборатории нейтронной физики ОИЯИ.		
Д2,13-83-689	Труды рабочего совещания по проблемам излучения и детектирования гравитационных волн. Дубна, 1983.	2 р. 00 к.			
Д13-84-63	Труды XI Международного симпозиума по ядерной электронике. Братислава, Исколодовати 1993	4 р. 50 к.	Сообщение Объединенного института ядерных исследований. Дубна 1986		
	чехословакия, 1983.				
Д 2 -84 -366	Труды 7 Международного совещания по проблемам квантовой теории поля. Алушта, 1984.	4 р. 30 к.			
Д1,2-84-599	Труды VII Международного семинара по проблемам Физики сиссима слергий. Дубла, 1904.	5 p. 50 k.			
Д17-84-850	Труды Ш Международного симпозиума по избранным проблемам статистической механики. Дубна,1984. /2 тома/	7 р. 75 к.	Перевод О.С.Виноградовой		
			PODOV A.K. P11-86-576		
Д10,11-84-818	Труды V Международного совещания по про- блемам математического моделирования, про- грамырования и математическим моделирования,		Power Oscillations of Pulsed Reactor		
	ния физических задач. Дубна, 1983	3 р. 50 к.	For analysis of the dynamics of a periodically pulsed reactor the condi- tions of formation of power oscillations are obtained. These are due to non- linear dependence of energy of power pulse from reactivity and power of de-		
	Труды IX Всесоюзного совещания по ускорителям заряженных частиц. Дубна, 1984 /2 тома/	13 р.50 к.	lay neutrons. It is shown that at reactor mean power achieving the first boundary value oscillations appear in the reactor which frequency is by a		
Д4-85-851	Труды Международной школы по структуре ядра, Алушта, 1985.	3 р. 75 к.	factor of 2 less the reactor power pulse frequency. For more value of the mean power stable oscillations are observed in the reactor which amplitud is determined by mean power level. For mean power equal the secondary bou dary value new oscillations appear. The frequency of additional oscillati is by a factor of 4 less than the reactor power pulse frequency. The aris double frequency oscillations are also stable.		
Д11-85-791	Труды Международного совещания по аналитическим вычислениям на ЭВМ и их применению в теоретиче- ской физике. Дубна,1985.	4 p.			
Д13-85-793	Труды XII Международного симпозиума по ядерной электронике. Дубна 1985.	4 р. 80 к.	The investigation has been performed at the Laboratory of Neutron Physics JINR.		
Зака Излатег	азы на упомянутые книги могут быть направлены 101000 Москва, Главпочтамт, п/я 7 пьский отлел Объединенного института спорти	по адресу: 9 Истивнования			
	прения отдел совединството института идерных	пселедованим	Communication of the Joint Institute for Nuclear Research. Dubna 1986		

 \mathcal{D}