

6506/83

СООБЩЕНИЯ Объединенного института ядерных исследований

дубна

NIL

P11-83-572

1983

Г.А.Емельяненко, А.И.Мачавариани*

О СТАНДАРТИЗАЦИИ ПРОГРАММ ЧИСЛЕННОГО РАСЧЕТА ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ ФАДДЕЕВА НА ПРИМЕРЕ ЗАДАЧИ УПРУГОГО ПИОН-ДЕЙТРОННОГО РАССЕЯНИЯ

* Институт физики высоких энергий Тбилисского государственного университета

введение

Метод интегральных уравнений Фаддеева является наиболее последовательным методом для исследования трехчастичных реакций в области низких и средних энергий. Подробный обзор результатов применения этого метода для описания процессов упругого нуклондейтронного и упругого пион-дейтронного рассеяния можно найти, например, в работах $^{/1,2,3'}$. В настоящее время интерес к подобным задачам усилился в связи с рядом теоретических обобщений трехчастичных интегральных уравнений на случай учета релятивизма частиц и неупругих каналов в процессах пион-дейтронного рассеяния /канала поглощения пиона $\pi d - NN$ и канала развала дейтрона $\pi d - \pi NN/$, а также в связи с новыми экспериментальными данными исследования процессов пион-дейтронного рассеяния, которые были получены на мезонных фабриках.

Несмотря на уже давно известные общие соотношения для описания трехчастичных процессов упругого рассеяния частиц методом интегральных уравнений Фаддеева и разработанную методику численного решения этих интегральных уравнений, задача создания стачдартной программы расчета трехнастичной системы интегральных уравнений с целью сравнения результатов счета с экспериментальными данными все еще остается открытой. Основная трудность при создании таких стандартных программ заключается в громоздкости общих формул для ядер трехчастичных интегральных уравнений и в большом числе искомых наборов трехчастичных парциальных t-матриц рассеяния. Это приводит к необходимости иметь большую оперативную память ЭВМ и к увеличению затрат счетного машинного времени. Например, если при расчете одного набора парциальных t-матриц /с фиксированной энергией и полным моментом J / упругого md -рассеяния в области /3.3/-резонанса ограничиться лишь ³S₁-волной NN-взаимодействий и Раз-волной пN -взаимодействий, то расчет такого набора трехчастичных t -матриц, проведенный по общим формулам ^{/4,5/} ядер интегральных, и в общей схеме расчета С-матриц требует в среднем на 10-15 минут большей затраты машинного времени ЭВМ CDC-6500, чем это требовалось при расчете того же набора трехчастичных t -матриц исходя из соотношений, полученных с самого начала при учете лишь указанных парциальных волн /4/. Следовательно, наиболее простые и часто используемые случаи набора двухчастичных парциальных волн должны быть включены в общую программу независимо от общих соотношений и общих схем расчетов трехчастичных t-матриц при любом наборе парных амплитуд. Такое

er er er Bittyn Se offisier

2.26 \$ 3 .

1

выделение частных случаев парных парциальных волн, как мы увидим ниже, дает значительную экономию счетного машинного времени, т.е. делает стандартную программу более приемлемой с практической точки зрения.

В данной работе рассматривается программа численного счета трехчастичной парциальной t-матрицы упругого пион-дейтронного рассеяния с учетом ${}^{3}S_{1} - {}^{3}D_{1}$ - волн в NN-взаимодействиях и S_{11} , S₃₁, Р₃₃ парциальных волн в пион-нуклонных взаимодействиях при любых возможных остальных трехчастичных квантовых числах. Как известно /3/, указанные парциальные волны дают основной вклад /80-90%/ в характеристики упругого пион-дейтронного рассеяния до кинетической энергии пиона ~400 МэВ. С другой стороны, в рассматриваемом случае построения решения трехчастичных уравнений у нас возникают те же сложности, что и в случае учета большого числа парных парциальных волн NN- и πN -взаимодействий. Поэтому рассматриваемая программа может служить основой для построения программ численного решения трехчастичных уравнений πd -рассеяния с большим числом парных парциальных волн, с одной стороны, а с другой - эта же программа может быть использована для решения и более простых модельных трехчастичных уравнений с меньшим числом парных парциальных волн.

1. ОБЩИЕ СООТНОШЕНИЯ

Решаемая система трехчастичных интегральных уравнений для t-матрицы пион-дейтронного рассеяния в модели сепарабельных парных взаимодействий и после разложения по парциальным волнам может быть представлена в следующем виде ^{/4,5/}:

$$T_{1}^{J}(xx_{0};a_{1}'a_{1};E) = \sum_{a_{2}} \int_{0}^{\infty} K_{12}^{J}(xy;a_{1}a_{2};E) \frac{y^{2}dy}{D_{2}(E,y)} T_{2}^{J}(yx_{0};a_{2}a_{1};E) ,$$

$$T_{2}^{J}(xx_{0};a_{2}a_{1};E) = 2K_{21}^{J}(xx_{0};a_{2}a_{1};E) + /1/$$

$$-\sum_{\alpha_{2}}\int_{0}^{\infty} K_{23}^{J}(xy;a_{2}a_{2}';E) \frac{y^{2}dy}{D_{2}(E,y)}T_{2}^{J}(yx_{0};a_{2}'a_{1};E) ,$$

где T_1^J t – матрица πd – рассеяния при заданной энергии E и с начальными и конечными импульсами xx_0 ; $\alpha_1'\alpha_1$ – набор квантовых чисел (π , d) -системы частиц в начальных и конечных состояниях. В частности, если L_i , S_i , J_i , J_i обозначают орбитальный момент, полный момент, спин и изоспин подсистемы j+k частиц, а $l_i j_i$ орбитальный момент и полный момент i-й частицы относительно (j + k) -пары, тогда $a_i = \{l_i\}$, так как $J_1 = S_1 = 1$, $J_1 = 0$ для дейтрона, а $a_2 = \{L_2, J_2, J_2; l_2 j_2\}$ - набор квантовых чисел (N, π N)-системы. J - обозначает полный момент трехчастичной системы (J = 0,1,2,...5). T_2^J - вспомогательная трехчастичная t-матрица. Через D_i в системе уравнений /1/ обозначены хорошо известные D-функции / i = 1/ NN- и /i = 2/ π N -систем частиц. Причем соответствующие парные t-матрицы имеют вид

$$T_{i}(p, q, E) = \frac{g_{i}(p) g_{i}(q)}{D_{i}(E)}$$
 /2/

Ядра интегральных уравнений /1/ ${ extsf{K}_{ extsf{ij}}^{ extsf{J}}}$ имеют следующий вид:

$$K_{ij}^{J}(\mathbf{x} \ \mathbf{g}; \alpha_{i} \alpha_{j}; \mathbf{E}) = \sum_{\mathcal{L}} \sum_{\lambda_{i}=0}^{L_{i}} \sum_{\lambda_{j}=0}^{L_{j}} G_{ij}^{J}(\alpha_{i} \alpha_{j}; \lambda_{i} \lambda_{j} \mathcal{L}) h_{ij}^{\lambda_{i} \lambda_{j} \mathcal{L}}(\mathbf{xy}; \mathbf{E}), /3/$$

где G_{ij}^{J} довольно-таки громоздкая угловая часть ядра⁷⁵⁷, зависящая от всех квантовых чисел a_i и a_j , к тому же содержащая вспомогательные квантовые числа $\lambda_i, \lambda_j, \Omega$. Радиальная часть ядер h_{ij}^{T} зависит не топько от квантовых чисел $i = (L_i, S_i, J_j; T_j)$ и $j = (L_j, S_j, J_j, T_j)$ подсистемы, но еще и от вспомогательных $\lambda_i, \lambda_j, \Omega$ и $t_{ij}r_2$ квантовых чисел:

$$h_{ij}^{\lambda_i \lambda_j \mathcal{L}} (\mathbf{x}, \mathbf{y}; \mathbf{E}) = /4 /$$

$$= \frac{1}{2} \int_{-1}^{1} d\theta P_{\mathcal{L}}(\theta) c_{\lambda_i \lambda_j} (\mathbf{x}, \mathbf{y}, \theta) g_i(\mathbf{x}, \mathbf{y}, \theta) g_j(\mathbf{x}, \mathbf{y}, \theta) G_0(\mathbf{E}, \mathbf{x}, \mathbf{y}, \theta),$$

где Р $\varrho(\theta)$ - полином Лежандра, с $_{\lambda_i \lambda_j}(\mathbf{x}, \mathbf{y}, \theta)$ - кинематические множители (4,5/, \mathbf{g}_i - формфакторы сепарабельных парных t -матриц, а G $_0(\mathbf{E}, \mathbf{x}, \mathbf{y}, \theta)$ - функция Грина трех невзаимодействующих частиц. Как показали результаты численного счета (3,4/, оптимальным в области низких и средних энергий является тот вариант кинематики, когда пион описывается релятивистски, а нуклоны считаются нерелятивистскими частицами. В этом случае, например в h_{23}^2 -ядре, имеем (4/

$$G_{0}(E, x, y, \theta) = \frac{1}{E + i0 - 2m_{N} - x^{2}/2m_{N} - \sqrt{m_{\pi}^{2} + x^{2} + y^{2} + 2xy\theta}}, \quad /5/$$

В частном случае интересующих нас парных парциальных волн ${}^{8}S_{1}$, ${}^{3}D_{1B}$ NN-подсистеме и S_{11} , S_{31} , P_{38} в π N -подсистеме $\ell_{1} = J$, $J \pm 1$ будет единственным нефиксированным параметром в a_{1} -наборе квантовых чисел, а в a_{2} -наборе квантовых чисел при $L_{2} = 0$ $J_{2} = 1/2$, $T_{2} = 1/2$, 3/2, $j_{2} = J \pm 1/2$ и $\ell_{2} = j_{2} \pm 1/2$, т.е. у нас 2x2x2=8 независимых парциальных наборов квантовых чисел, а при $L_{2} = 1$; $J_{2} = 3/2$, $j_{2} = J \pm 1/2$, $J \pm 3/2$, $\ell_{2} = j_{2} \pm 1/2$ у нас 4x2=8 квантовых чисел. Таким образом, всего при каждом фиксированном значении $J \ge 2$ полного момента системы у нас по-является 3+8+8=19 { T_{1} , T_{2} } искомых матриц.

2. КРАТКОЕ ОПИСАНИЕ ПРОГРАММЫ

Решение полученной системы интегральных уравнений обычно проводится методом итераций. Возникающая в ядрах интегрального уравнения /1/ h_{ii} /4/ логарифмическая особенность интегрируется при помощи метода деформированного контура /1/, т.е. вместо x - u y-переменных вводятся $xe^{-i\phi}$ - и $ye^{-i\phi}$ -переменные. Верхним пределом в уравнениях /1/ можно выбрать число порядка 300 МэВ. В программе этот параметр обозначен через В16. Квантовые числа набора $a_i = (L_i S_i J_i \mathcal{J}_i; \ell_i j_i), i = 1, 2$ в программе обозначены как $(L_i; IS_i, IJ_i, IJ_i; LS_i, IJS_i/, i = 1,2, причем из-за$ требования подпрограмм расчета коэффициентов Клебша-Гордона и Рака (VSS, SJS) эти квантовые числа удваиваются. Полный момент системы в программе обозначен через JT. угол леформации - через FI, NEMAX задает максимальное число точек кинематической энергии пиона, ERR - параметр размерности. Например, при ERR = 140 у нас все вычисляется в единицах m_{π}^{-1} , а при ERR = 1-в МэВах. a_{max}, a_{min} обозначают максимальные и минимальные значения параметров.

Программа расчета уравнений /1/ состоит из двух частей. В первой части рассчитываются все возможные при заданной энергии Е $h_{10}^{\mathcal{L}}$ (x, y) /4/ ядра. Эта часть называется KERN.Счет интегралов во́зможен в двух режимах: первый - с наперед заданной абсолютной или относительной точностью при помощи обобщенной программы SIMPS (x), второй - с использованием квадратурных формул Гаусса с 20 квадратурными точками. При этом во втором варианте требуемое счетное время составляет менее пяти минут на ЭВМ CDC-6500. Вычисленные таким образом /4/ функции при заданных х- и у-координатах записываются на МД ЭВМ CDC-6500 при помощи стандартных программ OPENMS и WRITMS. С этой целью применяются массивы LL12(N), определяющие количество h 🔓 - функций /4/ при заданных L_1 , L_2 , J_2 и J_2 квантовых числах. Например, при N = 1; $L_1 = 0$, $L_2 = 0$, $J_2 = J_2 = 1/2$ у нас будет максимальное значение $\mathcal{L}_{max} =$ $= J_{max} + 1 + L_1 + L_2 = 7$ для индекса полинома Лежандра в /4/. J_{max} обычно равно 6, а при $L_1 = 2$ $L_2 = 1$, $J_2 = J_2 = 3/2$, $\mathfrak{L}_{\mathtt{max}}$ =10, т.е. у нас будет десять наборов $\mathfrak{h}_{12}^{\mathtt{L}}$.Всего таких наборов двухчастичных квантовых чисел $L_1, L_2, J_2, J_2 - пять / N = 1, 2, 3, 4, 5/, а <math>h_{12}^2 - \phi$ ункций L12T - 50. Аналогичным образом классифицируются $h_{23}^2 - \phi$ ункции при помощи LL32(M) -массива, причем M = 1, 2, ...8 и общее число $h_{23}^2 - \phi$ ункций L23T = 69. Через комплексные функции h_2^2 и $h_{23}^2 \phi$ урнкций L23T = 69. Через комплексные функции h_2^2 и $h_{23}^2 \phi$ урнкций L23T = 69. Через комплексные функции h_2^2 и $h_{23}^2 \phi$ урнкций и 23T = 69. Через комплексные функции h_2^2 и $h_{23}^2 \phi$ урнкций для каждого значения x и у записывается на МД. Обычно для решений трехчастичных уравнений используют не более 20 точек Гаусса, т.е. количество записываемых массивов В /238/ составляет 20х20. Запись на устройствах внешней памяти $h_{12}^2 \cdot u h_{23}^2 - \phi$ ункций дает выигрыш в счетном времени ЭВМ, так как одни и те же h_{12}^2 и h_{23}^2 не надо считать при разных значениях полного момента J. Кроме того, такая запись экономит оперативную память ЭВМ и позволяет без дальнейших осложнений из-за оперативной памяти ЭВМ строить итерационный ряд уравнений /1/.

Вторая часть программы - AMPLTD вычисляет $T_1 - и T_2$ -матрицы методом итераций уравнений /1/. Для этого используется подпрограмма ITER,где через $T_1 \mu T_2$ строится интересующая нас амплитуда A при заданной энергии E, полном моменте J и LSIx , LSIy квантовых числах начального и конечного орбитального момента пиона относительно дейтрона ℓ'_1 и ℓ_1 ; $D_1 - \mu D_2$ -функции /2/ определяются при помощи задаваемых формфакторов $g_1 \mu g_2 NN$ - и πN подсистем, в программе AMPLTD и в подпрограмме ITER эти функции определяются через соответствующие СОММОN-блоки (DF), а угловые функции G12 и G23 /4/ рассчитываются при помощи подпрограмм FG12 и FG23. Результаты расчетов передаются в ITER через СОММОN-блоки: (G12) и (G22).

В подпрограмме ITER сначала строится неоднородный член уравнения /1/, который записывается в массив В, так как $\ell_1 = J, J \pm 1$ таких массивов в зависимости от ℓ_1 при каждом $J \ge 2$ строится сразу 3. Одновременно рассчитываются угловые части G12 и G23 и записываются при любых нужных наборах квантовых чисел в СОММОN-блоки |FG| и |MG|. Заметим, что расчет G12 и G23 угловых коэффициентов при $L_2 = 0$ или $L_1 = 0$ проводится не по общим формулам $^{/4,5/}$, а при помощи соответствующих частных случаев. Такое разделение при расчете G_{ij} -коэффициентов дает значительный выигрыш в счетном времени, так как общие формулы для G_{ii} громоздки.

После расчета неоднородного члена уравнений /1/ и угловых частей G_{12} и G_{23} производятся итерации уравнения /1/. С этой целью используются массивы С и D, причем применяется соотношение

$$D = \begin{bmatrix} T_1 \\ T_2 \end{bmatrix}_{NIT+1} = \begin{bmatrix} 0 \\ B \end{bmatrix} + \begin{bmatrix} 0 & ; FK12 \\ 2FK12^T & ; -FK23 \end{bmatrix} \begin{bmatrix} T_1 \\ T_2 \end{bmatrix}_{NIT},$$

4

где NIT обозначает номер итерации, C = $\begin{bmatrix} T_1 \\ T_2 \end{bmatrix}$; FK12 - K_{12}^J -

ядро интегрального уравнения /1/, а FK23 соответствует K_{23}^{J} -ядру. Используя известное соотношение

$$K_{12}^{J}(x, v; a_{1}a_{2}; E) = K_{21}^{J}(y, x; a_{1}a_{2}; E),$$
 (7/

видим, что вместо FK12 в /6/ следует подставлять FK12^T. Число блоков в T₁ определяется через KK1-индекс, который в зависимости от ℓ_1 квантового числа принимает при фиксированном J₁ и J₁ три значения. Число блоков в T₂ определяется L₂, J₂, J₂, J₂, ℓ_2 , ℓ_2 , j_2 квантовыми числами. Это число в программе обозначено через KK и для расматриваемого набора L₂, J₂, J₂ квантовых чисел KK = = 1,2,...16. Общее число алгебраических уравнений в /6/ равно KK1_{max} © LB + KK_{max} © LB = MAX, где LB-максимальное число точек в квадратурных формулах, KK1_{max} = max1 = 3. KK_{max} = max2 = 16 и MAX1© LB = NP1. MAX2 © LB = NP2.

Предлагаемая программа численного счета трехчастичных уравнений, описывающих упругое пион-дейтронное рассеяние, может быть после оптимизации использована как основа для создания стандартной программы пион-дейтронного или нуклон-дейтронного рассеяния. Кроме того, в настоящее время проводится работа по перенесению имеющейся программы на ЭВМ ЕС-1060 ЛВТА ОИЯИ.

Авторы благодарны М Дигаркава за предоставление программы GSIMPS.

ЛИТЕРАТУРА

- 1. Шмид Э., Цигельман Х. Проблема трех тел в квантовой механике. "Наука", М., 1979.
- 2. Копалейшвили Т.И. ЭЧАЯ, 1979, 10, с. 317.
- 3. Thomas A.W., Landau R.H. Phys.Rep., 1980, 58, p. 121.
- Kopaleishvili T.I., Machavariani A.I., Emelyanenko G.A. Nucl.Phys., 1978, A302, p. 423.
- 5. Копалейшвили Т.И., Мачавариани А.И. ТМФ, 1977, 30, с. 204.

Рукопись поступила в издательский отдел 25 августа 1983 года.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

Д3-11787	⁻ Труды III Международной школы по нейтронной физике. Алушта, 1978.	3	р.	00	к.
Д13-11807	Труды III Международного совещания по пропорциональ- ным и дрейфовым камерам. Дубна, 1978.	6	р.	00	к.
	Труды VI Всесоюзного совещания по ускорителям заря- женных частиц. Дубна, 1978 /2 тома/	7	р.	40	ĸ.
Д1,2-12036	Труды V Международного семинара по проблемам физики высоких энергий. Дубна, 1978	5	р.	00	ĸ.
Д1,2-12450	Труды XII Международной школы молодых ученых по физике высоких энергий. Приморско, НРБ, 1978.	3	р.	00	к.
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/	8	р.	00	к.
Д11-80-13	Труды рабочего совещания по системам и методам аналитических вычислений на ЗВМ и их применению в теоретической физике, Дубна, 1979	3	р.	50	к.
Д4-80-271	Труды Международной конференции по проблемам нескольких тел в ядерной физике. Дубна, 1979.	3	р.	00	к.
Д4-80-385	Труды Международной школы по структуре ядра. Алушта, 1980.	5	р.	00	к.
g2 91 543	Труда VI Мождународного совещания по проблежам кван товой теории поля. Алушта, 1981	2	р.	50	к.
Д10,11-81-622	Труды Международного совещания по проблемам математи- ческого моделирования в ядерно-физических исследова- ниях. Дубна, 1980	2	р.	50	к.
Д1,2-81-728	Труды VI Международного семинара по проблемам физики высоких энергий. Дубна, 1981.	3	p.	60	к.
д17-81-758	Труды II Международного симпозиума по избранным проблемам статистической механики. Дубна, 1981.	5	р.	40	к.
Д1,2-82-27	Труды Международного симпозиума по поляризационным явлениям в физике высоких знергий. Дубна, 1981.	3	p.	20	к.
P18-82-117	Труды IV совещания по использованию новых ядерно- физических методов для решения научно-технических и народнохозяйственных задач. Дубна, 1981.	3	p.	80	к.
д2-82-568	Труды совещания по исследованиям в области релятивистской ядерной физики. Дубна, 1982.	1	р.	75	к.
д9- 82- 6 64	Труды совещания по коллективным методам ускорения. Дубна, 1982.	3	р.	30	к.
ДЗ,4-82-704	Труды IV Международной школы по нейтронной физике. Дубна, 1982.	5	р.	0 0	к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований

6

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Индекс	Тематика	
1.	Экспериментальная физика высоких энергий	
2.	Теоретическая физика высоких энергий	
3.	Экспериментальная нейтронная физика	
4.	Теоретическая физика низких энергий	
5.	Математика	
6.	Ядерная спектроскопия и радиохимия	
7.	Физика тяжелых ионов	
8.	Криогеника	
9.	Ускорители	
10.	Автоматизация обработки экспериментальных данных	
11.	Вычислительная математика и техника	
12.	Химия	
13.	Техника физического эксперимента	
14.	Исследования твердых тел и жидкостей ядерными методами	
15.	Экспериментальная физика ядерных реакций при низких энергиях	
16.	Дозиметрия и физика защиты	
17.	Теория конденсированного состояния	
18.	Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники	
19.	Биофизика	

Емельяненко Г.А., Мачавариани А.И.

P11-83-572

0 стандартизации программ численного расчета интегральных уравнений Фаддеева на примере задачи упругого пион-дейтронного расселния

Рассматривается задача стандартизации численного расчета трехчастичных интегральных уравнений. Дано краткое описание программы на фортране для расчета амплитуды упругого пион-дейтронного рассеяния в сепарабельной модели парных взаимодействий на ЭВМ СДС-6500. При этом учитываются ${}^8S_1 - {}^8D_1$ парциальные волны в нуклон-нуклонных и S_{11} -, S_{31} -, P_{33} -волны в пион-нуклонных взаимодействиях. Программа может быть использована для создания стандарт-ного пакета программ расчета трехчастичных интегральных уравнений.

Работа выполнена в Лаборатории вычислительной техники и автоматизации ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1983

Emelyanenko G.A., Machavariani A.I. On Standartization of Calculation Programs for the Three-Particle Faddeev Equations as illustrated by the Resilent Pion-Deuteron Scattering Problem

The problem of standartization of numerical calculations for threeparticle integral equations is investigated. A brief description of a Fortran program for the CDC-6500 computer is given, which is designed for computation of the amplitude if a resilient pion-deuteron scattering within the separable model of pair interactions $\$\$_1 - \$D_1$ partial waves for nucleon-nucleon interacting and $\$_{11} - \$\$_{11} - \$\$_{12}$ - waves in pion-nucleon interactions are taken into account. The program may be employed for the design of a standard program packet for calculation of three-particle integral equations.

The investigation has been performed at the Laboratory of Computing Technique and Automations, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1983

Перевод авторов