81-252

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

2869/2-81

P11-81-252

15/6-81

Д.Баатар, Н.М. Плакида, И.В.Пузынин

УИСЛЕННОЕ ИССЛЕДОВАНИЕ УРАВНЕНИЯ ШРЕДИНГЕРА ДЛЯ ПОТЕНЦИАЛА ГАУССОВСКОГО ТИПА С ДВУМЯ МИНИМУМАМИ

I. <u>Введение</u>

В ряде физических задач возникает необходимость в решении уравнения Шредингера для потенциала с несколькими минимумами. Укажем здесь вычисления электронных уровней в молекулах типа NH3 или залачу ND_3 /I/, задачу определения частоты сильно ангармонических колебаний легкой внецентровой примеси/2/, проблему описания фазового перехода с учетом туннелирования частиц в потенциальной яме с двумя минимумами /3/ и т.д. Решение этих задач в рамках обычной теории возмущений (ТВ) затруднено ввиду плохой сходимости ряда ТВ для сильно ангармонического потенциала. В настоящей работе проведено численное решение уравнения Шредингера, которое позволяет оценить точность TB/1/ при выборе потенциала в виде суммы гармонической части и центрального барьера гауссовского типа. При численном решении используется непрерывный аналог метода Ньютона (HAMH)^{/5/}. Энергия первого возмущенного уровня сравнивается также с эффективной гармонической частотой, вычисленной в приближении самосогласованного фононного поля.

2. Модельный потенциал

Обычно при описании потенциала, имеющего два минимума, выбирают модельный потенциал с четвертым ангармонизмом в виде:

$$V(z) = -\frac{A}{2}z^{2} + \frac{B}{4}z^{4}, \qquad (1)$$

где два параметра потенциала A и B определяют высоту центрального барьера $U_0 = A^2/4B$ и расстояние между его двумя минимумами $2\tau_0 = 2\sqrt{A/B}$. Однако этот потенциал трудно использовать при расчетах по TB, так как для него отсутствует удобное нулевое приближение. В ряде работ (см. напр./1/, /2/,/18/,/19/) был рассмотрен модельный потенциал следующего вида:

$$U(r) = \frac{A_0}{2} r^2 + A_0 \frac{d}{26} e^{-6r^2}, \qquad (2)$$

в котором центральный барьер гауссовского типа при 🖈 1 приводит к двум минимумам. Гармоническую часть потенциала в (2) удобно выбрать в качестве нулевого приближения, определяющего эквидистантный спектр гармонических колебаний с частотой $\omega_{o} = \sqrt{A_{o}/m}$, т - масса частицы. Тогда ангармоническую часть потенциала, в которой два параметра 🗙 и в определяют высоту центрального барьера в полном потенциале (2) Uo= (Ao/26) [d-1-lnd], и расстояние между двумя минимумами, 22.= = 2 Vend/B можно рассматривать в качестве возмущения. Отметим, что потенциал (2) при d-1 << 1 можно назвать слабоангармоническим, когда он может быть аппроксимирован при 2 << 2, формулой (I) с параметрами $A = A_o(d-1) \ll A_o$ и $B = \delta_o A_o$. В случае же $d \gg 1$ разложение экспоненты в (2) при $2 \sim 7_o$ неэффективно ($\beta r_o^2 = \ell_n d \gg 4$). и потенциал (2) можно назвать сильно ангармоническим.

Для определения спектра собственных значений для частицы массы т в потенциальной яме (2) необходимо решить уравнение Шредингера, которое мы запишем в виде:

$$\left\{-\frac{\lambda_{o}^{2}}{2}\frac{d^{2}}{dx^{2}}+\frac{x^{2}}{2}+\frac{d}{2}e^{-x^{2}}-\frac{1}{2}(1+\ell_{n}d)\right\}\Psi_{n}(x)=\lambda_{o}\mathcal{E}_{n}\Psi_{n}(x),\quad(3)$$

где введены безразмерные величины: координата $x = z \sqrt{8}$, квантовый параметр

$$\lambda_{o} = \frac{\pi \omega_{o}}{A_{o}/6} . \tag{4}$$

Уровни энергии

$$\mathcal{E}_n = \frac{\mathbf{E}_n}{\hbar \,\omega_o} \tag{5}$$

отсчитываются от дна потенциальных ям при $x = \pm x_0$, $x_0 = \sqrt{lnd}$, $\mathcal{J}(x_0) = 0$. Параметры λ_0 и \mathcal{A} определяют высоту центрального барьера:

$$B = \frac{u_o}{\hbar\omega_o} = \frac{d-1-lnd}{2\lambda_o} , \qquad (6)$$

спектр собственных значений уравнения (3) зависит от соотношения параметров λ_o и \prec : при $\lambda_o > \prec$ нижние уровни энергии лежат выше центрального барьера, и спектр возмущений соответствует энергиям слабоангармонического осциллятора со сгущением спектра для нижних уровней. В случае $\lambda_o << \checkmark$ барьер (6) имеет большую высоту, так что нижние уровни соответствуют спектру туннелирующей частицы.

Далее проводится численное решение уравнения (3) при таком выборе параметров λ_0 и \ll , или, эквивалентно **В** (6),

$$\rho = lnd$$
, (7)

который позволяет рассмотреть оба упомянутых выше предельных случая.

3. О численном решении уравнения Шредингера

Уравнение (3) вместе с условиями убывания волновых функций $\Psi_{\alpha}(\infty)$ при $|\infty| \rightarrow \infty$

$$\lim_{x \to \infty} \Psi_n(x) = 0 \tag{8}$$

представляет сингулярную задачу Штурма-Лиувилля^{/4/}. Она является нелинейной, поскольку неизвестной является пара: уровень энергии \mathcal{E}_n собственное значение и соответствующая волновая функция $\Psi_n(x)$ собственный элемент. Так как уравнение (3) и асимптотические условия (8) являются однородными относительно собственного элемента $\Psi_n(x)$, то дополнительное условие нормировки, например, в виде

$$\int_{\infty} \Psi_n^{2}(x) \, dx - 1 = 0 , \qquad (9)$$

позволяет доопределить задачу (3), (8), выделив множество нормированных собственных элементов.

Введем обозначения

$$\begin{aligned} \mathcal{A} &= \frac{d^2}{dx^2} + Q(x) ,\\ Q(x) &= (1 + \ln d - x^2 - d e^{-x^2}) / \lambda_o^2 ,\\ E_n &= -\frac{2 \varepsilon_n}{\lambda_o} , \end{aligned} \tag{I0}$$
$$(\Psi, \chi) &= \int_{-\infty}^{\infty} \Psi(x) \chi(x) dx .$$

Тогда задачу (3),(8) вместе с дополнительным условием нормировки (9) можно рассматривать как нелинейное уравнение относительно элемента $2 = \{ E, \Psi(\infty) \}$

$$\varphi(z) \equiv \begin{pmatrix} \mathcal{A} \, \Psi - E \, \Psi \\ (\Psi, \Psi) - 1 \end{pmatrix} = 0 , \qquad (11)$$

где линейный оператор \mathcal{A} , определенный в пространстве дважды непрерывно дифференцируемых функций, которые удовлетворяют условию (8), является самосопряженным.

Численное решение уравнения (II) методом с контролируемой вычислительной погрешностью позволяет упростить исследование точности п приближенного решения, получаемого по ТВ для модельного потенциала (2). Поскольку при построении ряда ТВ появляется информация о приближенном решений задачи (3), (8), ее целесообразно использовать в вычислительной схеме. Одним из эффективных подходов к построению вычислительных схем уточнения априорной информации о решении нелинейной задачи (II) является построение итерационных схем на основе НАМН.

С помощью НАМН^{/5/} процесс решения уравнения (II) приводится к исследованию динамического процесса, описываемого дифференциальным уравнением

$$\Psi'(z(t))\frac{dz(t)}{dt} = -\Psi(z(t)), \qquad (12)$$

где $\mathcal{L}(o \leq t < \infty)$ - дополнительный непрерывный параметр, с некоторым начальным условием

$$\Xi(o) = \{ E_o, \Psi_o(x) \}.$$
(13)

Доказано^{/6/}, что если уравнение (II) имеет решение $2^{*}=\{e^{*}, \psi^{*}(x)\}$, причем E^{*} – простая изолированная точка спектра оператора A, то процесс (I2) сходится при $t \rightarrow \infty$ к решению 2^{*} со скоростью $||2(t)-2^{*}|| \leq$ $\leq const \cdot e^{-t}$ для любого начального условия (I3) из достаточно близкой окрестности искомого решения. Поэтому чем точнее априорная информация используется в начальном условии (I3), тем устойчивее сходимость НАМН.

Итерационный ньютоновский процесс, полученный на основе метода Эйлера решения задачи Коши (I2)-(I3), заключается в определении на каждом шаге с номером \bigstar по известным приближениям { $E_{\kappa}, \Psi_{\kappa}(x)$ } неизвестных итерационных поправок { $\mu_{\kappa}, \Psi_{\kappa}(x)$ }

$$\mu_{\kappa} = \tau_{\kappa}^{-4} \left(E_{\kappa+4} - E_{\kappa} \right) , \qquad (14)$$
$$\mathcal{U}_{\kappa}(\boldsymbol{x}) = \tau_{\kappa}^{-4} \left(\Psi_{\kappa+4}(\boldsymbol{x}) - \Psi_{\kappa}(\boldsymbol{x}) \right) ,$$

где \mathcal{T}_{∞} - шаг интегрирования по методу Эйлера.

Эти поправки находятся из системы уравнений

$$\mathcal{A} \mathcal{V}_{\kappa} - \mathcal{E}_{\kappa} \mathcal{V}_{\kappa} = -(\mathcal{A} \mathcal{V}_{\kappa} - \mathcal{E}_{\kappa} \mathcal{V}_{\kappa}) + \mathcal{\mu}_{\kappa} \mathcal{V}_{\kappa} ,$$

$$\mathcal{A} \left(\mathcal{\Psi}_{\kappa} , \mathcal{V}_{\kappa} \right) = \mathbf{1} - \left(\mathcal{\Psi}_{\kappa} , \mathcal{\Psi}_{\kappa} \right) ,$$
(15)

которая получается из аппроксимации уравнения (I2) разностным уравнением при $\mathcal{A} = \mathcal{A}_{\infty}$

$$\Psi'(\mathfrak{P}_{\kappa})\begin{pmatrix} v_{\kappa}\\ \mu_{\kappa} \end{pmatrix} = -\Psi(\mathfrak{P}_{\kappa}).$$

Решив систему (15), можно с помощью двухслойной разностной аппроксимации (14) для производных $\frac{d}{dt} \in (t)$ и $\frac{2}{2t} \, \varphi(x, t)$ определить при $t_{\kappa+4} = t_{\kappa} + \tau_{\kappa}$ следующие приближения $\{ \mathbf{E}_{\kappa+4}, \psi_{\kappa+4}(x) \}$, если задать шаг интегрирования τ_{κ} . Заметим, что при $\mathcal{T}_{\kappa} = 1$ описываемый итерационный процесс совпадает с классическим методом Ньютона-Канторовича⁷⁷, имеющим квадратичную сходимость в локальной окрестности искомого решения. Специальный выбор параметра \mathcal{T}_{κ} позволяет расширить область сходимости рассматриваемого итерационного процесса по сравнению с классическим. В частности, выбор \mathcal{T}_{κ} можно согласовать с изменением невязки ⁸/

$$\delta_{\kappa} = \left\| \mathcal{A} \, \mathcal{Y}_{\kappa} - \mathsf{E}_{\kappa} \, \mathcal{Y}_{\kappa} \right\| \,, \tag{16}$$

или значение \mathcal{T}_{κ} можно определить из условия минимума этой невязки на данном итерационном шаге^{/9/}. Эти способы хорошо зарекомендовали себя на практике и обеспечивают устойчивую сходимость итерационного процесса во многих задачах. В близкой окрестности решения, то есть при достаточно малых δ_{κ} , минимум невязки достигается при $\mathcal{T}_{\kappa} = 1$. Как известно^{/II/}, величина невязки (I6) характеризует точность

Как известно^{/11/}, величина невязки (16) характеризует точность определения собственного значения \mathbf{E}^* : если \mathcal{A} – самосопряженный оператор и известны { $\mathbf{E}_{\kappa}, \Psi_{\kappa}(\infty)$ }, причем $\||\Psi_{\kappa}(\infty)\|| = 1$, то в промежутке [$\mathbf{E}_{\kappa} - \delta_{\kappa}, \mathbf{E}_{\kappa} + \delta_{\kappa}$] есть точка спектра \mathcal{A} . Поэтому итерационный процесс (15),(14) продолжается до достижения достаточно малого значения невязки δ_{κ} (16).

Экономичным способом решения системы (15) является представление решения $U_{\mathbf{k}}$ в виде

$$U_{\kappa} = \mathcal{V}_{\kappa}^{(a)} + \mu_{\kappa} \mathcal{V}_{\kappa}^{(a)}. \tag{17}$$

Из первого уравнения системы (I5) следует, что $\mathcal{V}_{\kappa}^{(2)} = -\mathcal{\Psi}_{\kappa}$, а компонента $\mathcal{V}_{\kappa}^{(2)}$ является решением краевой задачи

$$\left(\mathcal{A} - \mathbf{E}_{\kappa}\mathbf{I}\right) \mathcal{V}_{\kappa}^{(2)} = \Psi_{\kappa}. \tag{18}$$

Определив компоненту $U_{\kappa}^{(\lambda)}$ и подставляя выражение (17) во второе уравнение системы (15), получим выражение для итерационной поправки μ_{κ}

$$\mathcal{M}_{\kappa} = \left[\mathbf{1} + \left(\Psi_{\kappa}, \Psi_{\kappa} \right) \right] / \mathcal{Z} \left(\Psi_{\kappa}, \mathcal{V}_{\kappa}^{(2)} \right). \tag{19}$$

В таком представлении рассматриваемый итерационный процесс при $\mathcal{T}_{\kappa} \equiv 1$ совпадает с методом обратных итераций /12/. Отметим, что решение задачи (18) вблизи искомого собственного значения Е может представлять определенную сложность /13/, поскольку эта задача становится плохо обусловленной. В этом случае целесообразно перейти к модифицированным итерационным схемам, которые получаются при решении методом Эйлера эволюционной задачи

$$\varphi'\left(\bar{z}(t)\right)\frac{dz(t)}{dt} = -\varphi\left(z(t)\right), \quad z(0) = z_0,$$

где $\vec{z}(t)$ – специально заданная траектория. В частности, если $\vec{z}(t) \equiv z_o = \{ E_o, \Psi_o(x) \}$, то при $\mathcal{T}_{x} \equiv 1$ получается известный модифицированный метод Ньютона-Канторовича/7/.

Таким образом, рассматриваемая итерационная схема сводит решение задачи на собственные значения (3),(8) к решению бесконечной последовательности граничных задач

$$\left(\frac{d^{2}}{dx^{2}} + Q(x) - E_{\kappa}\right) V_{\kappa}^{(2)}(x) = \Psi_{\kappa}(x) , \qquad (20)$$

$$\lim_{x \to \infty} \mathcal{V}_{\kappa}^{(2)}(x) = 0 \tag{21}$$

и определению итерационных поправок \mathcal{M}_{∞} по формуле

- 00 < 00 < + 00 ,

$$\mu_{\kappa} = \left[1 + \int_{-\infty}^{\infty} \Psi_{\kappa}^{2}(x) dx \right] / 2 \int_{-\infty}^{\infty} \Psi_{\kappa}(x) U_{\kappa}^{(2)} dx. \qquad (22)$$

Численное решение задачи (20)-(21) может быть осуществлено любым известным способом.

Весьма эффективным является метод конечных разностей $^{/14/}$. Чтобы применить этот метод, необходимо задачу (20)-(21), поставленную на оси - $\infty < \infty < \infty$, аппроксимировать соответствующей задачей на отрез-ке - $X_{\kappa} \le \infty \le X_{\kappa}$, где $X_{\kappa} \gg 1$. При этом простейшим способом аппроксимации асимптотических условий (21) является их замена граничными условиями

$$\mathcal{V}_{\kappa}^{(a)}(-X_{\kappa}) = \mathcal{V}_{\kappa}^{(a)}(X_{\kappa}) = 0.$$
⁽²³⁾

Соответственно в формуле (22) интегрирование на оси заменяется интегрированием на отрезке – $X_{\kappa} \leq x \leq X_{\kappa}$. При такой аппроксимации итерационные поправки \mathcal{M}_{κ} , $\mathcal{N}_{\kappa}^{(s)}(\infty)$, а следовательно, и приближения к решению \mathbf{E}_{κ} , $\mathcal{V}_{\kappa}^{(x)}(\infty)$, становятся функциями параметра X_{κ} .

Разностную аппроксимацию уравнения (20) с граничными условиями (23) можно осуществить различными способами. Поскольку задача (20), (23) определяет итерационные поправки, то, согласно/12/, целесообразно использовать простые разностные формулы с относительно невысоким порядком точности аппроксимации, уточняя затем расчеты на последовательности сгущающихся сеток/15/. Рассмотрим на каждом итерационном шаге с номером К равномерную сетку

$$\omega_{\kappa} = \{-X_{\kappa} = x_1, x_2, \dots, x_n, x_{n+1} = x_n + h_{\kappa}, \dots, x_m = X_{\nu}\}$$

и заменим граничную задачу (20),(23) разностной краевой задачей

$$\begin{aligned} \mathcal{A}_{X_{K},h_{K}} \mathcal{V}_{\kappa}^{(2)} &= h_{\kappa}^{-2} \left[\mathcal{V}_{\kappa}^{(2)}(x_{n-a}) - 2 \mathcal{V}_{\kappa}^{(2)}(x_{n}) + \mathcal{V}_{\kappa}^{(2)}(x_{n+a}) \right] + (24) \\ &+ \left(Q(x_{n}) - E_{n} \right) \mathcal{V}_{\kappa}^{(2)}(x_{n}) = \mathcal{V}_{\kappa}(x_{n}) , \ n = 2, \dots, M-1 ; \\ \mathcal{V}_{\kappa}^{(2)}(x_{a}) &= \mathcal{V}_{\kappa}^{(2)}(X_{M}) = 0. \end{aligned}$$

$$(25)$$

Разностную задачу легко решить с помощью метода прогонки/14/ и найти значения сеточной функции $\mathcal{U}_{\kappa,h}^{(2)}$ в узлах сетки ω_{κ} . Далее, заменив интегралы квадратурными формулами трапеций, можно найти значение $\mathcal{M}_{\kappa,h}$.

Если в процессе итераций разностные сетки не меняются, то есть $x_{\kappa} \equiv \chi$, $h_{\kappa} \equiv h$, то такая вычислительная схема эквивалентна нью-тоновскому итерационному процессу решения дискретной задачи

$$\mathcal{C}_{\mathbf{x},\mathbf{h}}(\mathcal{Z}_{h}) \equiv \begin{pmatrix} \mathcal{A}_{\mathbf{x},\mathbf{h}} \mathcal{\Psi}_{h} - \mathcal{E}_{h} \mathcal{\Psi}_{h} \\ (\mathcal{\Psi}_{h}, \mathcal{\Psi}_{h})_{\mathbf{x},\mathbf{h}} - 1 \end{pmatrix} = 0 , \qquad (26)$$

причем $\| (\Psi_{\mathbf{x}}(\mathbf{z}^*) - \Psi_{\mathbf{x},\mathbf{h}}(\mathbf{z}^*)) \| \leq const \cdot h^2$. Теория разностной задачи Штурма-Лиувилля разработана в/14/. В рамках ньютоновского процесса можно показать, следуя работе /16/что при достаточно малых h

$$\delta_1 = \| \boldsymbol{z}_{\mathbf{x},\mathbf{h}}^* - \boldsymbol{\bar{z}}_{\mathbf{x},\mathbf{h}} \| \leq \text{const} \cdot \boldsymbol{h}^2, \qquad (27)$$

где $\mathcal{Z}_{x,h}^{*}$ - сеточный образ точного решения задачи $\mathcal{C}_{x}(\mathcal{Z}) = O$, а $\tilde{z}_{x,h}$ - решение дискретной задачи (26).

Эк, - решение дискретной задачи (20).
 Поскольку на ЭВМ реализуется решение уравнения (26), то погрешность полученного решения складывается из погрешности аппроксимации сингулярной задачи (3), (8) краевой задачей на отрезке -× 4 x 4 x

$$S_2 = ||2^* - 2_x^*||$$
, (28)

погрешности разностной аппроксимации (27) и погрешности итерационного метода, которая характеризуется величиной невязки $\delta_{\kappa,h}$. Если для двух последних погрешностей имеются теоретические оценки, то погрешность (28) обычно оценивается путем сравнения расчетов при различных значениях X.

4. Численные результаты

 $\Psi_{o}(\boldsymbol{x}) = \frac{1}{\sqrt{\boldsymbol{z}(a \pm \boldsymbol{\rho})}} \left[\Psi_{o}^{\dagger}(\boldsymbol{x}) \pm \Psi_{o}^{-}(\boldsymbol{x}) \right] ,$

В выполненных расчетах решений задачи (3),(8) с помощью рассмотренной вычислительной схемы, которая была реализована в виде специальной программы на ЭВМ **сDс-6500**, начальное условие (13) итерационного процесса задавалось комбинацией функций левого (-) и правого (+) состояний гармонического осциллятора

где

$$\Psi_{0}^{\pm}(x) = \Psi(x \pm x_{0}), \quad \Psi(x) = \frac{1}{(\sigma \sqrt{\pi})^{\frac{1}{2}}} e^{-\frac{x^{n}}{2\sigma^{2}}},$$

$$x_{0} = \sqrt{\ell_{n}d^{2}}, \quad \sigma = \frac{\lambda_{0}}{\sqrt{2}\pi_{0}}, \quad \beta_{1} = \int_{0}^{\infty} \Psi(x + x_{0})\Psi(x - x_{0})dx,$$

$$E_{0,i} = E_{0} \mp \frac{1}{2}q, \quad x_{0,1} = \int_{0}^{\infty} \Psi_{0}(x) x \Psi_{1}(x)dx,$$

$$q = \frac{1}{d^{\frac{1}{2}}}, \quad E_{0} = (0.5 \, \ell_{n}d)^{\frac{1}{2}}.$$
(30)

гле

а

Такой выбор начального условия обеспечивал устойчивую сходимость итерационного процесса от начальных значений $\delta_{o;h}$ 10² до значений невязки $\delta_{\kappa,h}$ 10⁸ для уточненных решений.

В таблице I приведены значения уровней энергии, вычисленные при различных значениях параметров модельного потенциала. Здесь же для сравнения приведены значения уровней энергии, полученные по ТВ^{/I/}.

Таблица І.

(29)

d	λ。	9	В	E	E ₁	Eo	E ₁	x.1
96	0,5596	0	0,50	0,4004	0,7848	0,400427	0,784763	0,82
2,45	<u>I,II92</u>	۰. ۲	0,25	0,3527	0,9754	0,352737	0,975404	0,95
	5,5960	 	0,05	0,4138	I,3430	0,4I35I0	I,3430I9	I,73
4,4817	0,4954	_	2,00	0,7645	0,8255	0,764521	0,825497	I,I8
	0,9909	I,5(I,00	0,5867	0,9040	0,586679	0,903952	I,23
	4,9542		0,20	0,4243	I,2778	0,424257	I,277827	I,70
0232	0,6353	-	6,00	I,0424	I,0443	I,042374	I,044302	I,62
	1,2705	2,4C	3,00	0,9529	I,0294	0,952915	I,029416	I,65
글	5,445I		0,70	0,5435	I,2456	0,543475	I,245569	I,94

¢

Приведенные значения E: получены методом уточнения разностных значений E_{ih} по Ричардсону^{/17/} на сетках с шагами h = 0.2; 0,1; 0.05 при X = 10, который дает теоретическую относительную точность результата $\sim 10^{-4}$. Основной вклад в ошибку при этом дает аппроксимация асимптотических условий (8). Однако сравнение с результатами, полученными по TB, показывает, что реальная относительная точность расчетов $10^{-4} + 10^{-5}$.

Таблица 2 демонстрирует зависимость ошибки в вычислениях при различных значениях щага h разностной сетки уровней энергии E_{ih}

(i = 0; I) от величины h. Эта зависимость квадратичная. Аналогичная зависимость сохраняется и для ошибок значений сеточных волно-

Таблица 2.

d	λ。	Eh	0.05	0.I	0.2	Δ1	$\Delta_{\mathbf{z}}$	Δ_2/Δ_1
0 559A	596	Eoh	0,400358	0,400150	0,399309	2,08	8,4I	4,04
	0.5	Esh	0,784434	0,783447	0,779487	9,87	39,6	4,01
96	21	Esh	0,352701	0,352592	0,352157	I,09	4,35	3,99
.45	I,I	Esh	0,975161	0,974431	0,971508	7,30	2,92	4,00
	960	E _{oh}	0,413816	0,4I3780	0,413636	0,36	I,44	4,00
	ີ ຊີ	Esh	0,342952	I,342748	I,34I930	2,04	8,18	4,0I
	954	Eoh	0,764181	0,763I57	0,759015	10,24	41,42	4,04
	0,4	Esh	0,825I3I	0,824028	0,819565	II,03	44,63	4,05
	6066 0	Eoh	0,586597	0,586351	0,585357	2,46	9,94	4,04
1817		Esh	0,903730	0,903063	0,900387	6,67	26,76	4,0I
4,4	4,9542	Eoh	0,424245	0,424208	0,424062	0,37	I,46	3,95
		Esh	I,277753	I,277529	I,276633	2,24	8,96	4,00
	1 2 2 3 2 3	Enh	1,041864	1,040329	1,034132	15,35	61,97	4,04
,0232	1,27050,6	Eak	1,043803	1,042300	I,036229	I5 ,03	60,7I	4,04
		Eak	0,952701	0,952058	0,949472	6,43	25,86	4,02
		Eat	1,029204	I,028565	I,025998	6,39	25,67	4,02
	,4451	Eat	0,543462	0,543424	0,543270	0,38	I,54	4,05
		Eat	1,245504	I,245308	I,244526	I,96	7,82	3,99

При Х=10.

вых функций Ψ_{ih} , что подтверждает оценку (27). В таблице 3 приведена зависимость от ∞ вычисленных при различных значениях параметра ∞ уровней энергии E_{ih} при фиксированном h. Из таблицы видно, что выбор значения X = 10 обеспечивает 4 + 5 десятичных знаков после запятой в вычисленных значениях E_{ih} для малого значения λ_o и 3 + 4 десятичных знака после запятой для больших значений λ_o . Это согла-

Таблица З.

	h	-	•	A
upn -		-	υ,	*

d	λ.	E E	4	6	8	10
	559		0,40015	}		0,40015
	<u> </u>		0,78345	2		0,78345
2,4596	192		0,35261			0,35259
	<u> </u>		0,97458			0,97443
	960				0,41381	0,41378
	_ <u>5</u> _				I,34285	I ,342 75
	4964			0,76316	. <u> </u>	0,76316
	0°			0,82403		0,82403
817	066			0,58635		0,58635
4 4	් ද			0,90306		0,90306
	954				0,42479	0,42421
					I,27768	I,27753
	635			I,04033		I,04033
	<u>و</u> ر.			I,04230		I,04230
232	270			0,95206		0,95206
1,0	Г.			I,02857		I,02857
	14 5 I				0,54386	0,54342
	2,5				I,24544	I,2453I

суется с точностью разностной аппроксимации задачи. При больших значениях λ_o , т.е. при малой высоте потенциального барьера, когда точная волновая функция значительно отличается от начального вида (29), зависимость E_{ih} от X становится более сильной. Это означает, что для обеспечения более высокой относительной точности $10^{-5}+10^{-6}$ следует брать значение X ≈ 20 .

10

5. Самосогласованная теория возмущений

В работах /18,19/ потенциал (2) был использован для изучения колебаний ангармонической решетки. В этих работах использовалась самосогласованная теория возмущений, в которой проводится определенное выборочное суммирование членов ТВ (см. 20). При этом в качестве нулевого приближения применяется эффективный гармонический потенциал, определяющий частоту колебаний (в единицах $\hbar \omega_{o}$) в виде:

$$V_0^2 = 1 - \frac{\alpha}{(1 + \gamma_0)^{3/2}}$$
, (31)

где у.= Х./у. – среднеквадратичные флуктуации частицы в яме, обусловленные нулевыми колебаниями. Во 2-м порядке этой самосогласованной теории частота колебаний определяется из уравнения (см./18/):

$$V_0^2 = 1 - \frac{\alpha}{(1+\gamma_0)^{3/2}} - \frac{9}{16} \cdot \frac{(\alpha \cdot \lambda_0)^2}{\nu_0^4 \cdot (1+\gamma_0)^5}.$$
 (32)

Результаты численного решения уравнений (31) и (32), обозначенные, соответственно, $\mathcal{Y}_{o}^{(2)}$ и $\mathcal{Y}_{o}^{(2)}$, приведены в таблице 4, где они сопоставляются с расчетом $\mathcal{Y}_{o} = \mathbf{E}_{2} - \mathbf{E}_{0}$ из таблицы I. Как видно, самосогласованная ТВ дает достаточно точную оценку в случае большой энергии нулевых колебаний, когда нижние уровни $\mathbf{E}_{o}, \mathbf{E}_{1}$ лежат выше или вблизи центрального барьера. Для глубоких уровней приближение эффективного гармонического потенциала неудовлетворительно – в этом слу-

Габлица	4.
---------	----

d	λ_{\circ}	$V_0 = E_1 - E_0$	Y ₀ ⁽¹⁾	V, ⁽²⁾
	0,5596	0,384336	0,4791	0,0981
2,4596	1,1192	0,622667	0,664I	0,5792
	5,5960	0,929509	0,9314	0,9273
4,4817	0,4954	0,060976	0,2672	0,0117
	0,9909	0,317273	0,4557	0,1282
	4,9542	0,853570	0,8626	0,8455
1232	0, 6353	0,001928	0,1574	0,0039
	1,2705	0,076501	0,2976	0,0326
1.	6 ,44 5I	0,702094	0,7383	0,6667

чае следует пользоваться моделью туннелирующей частицы, описываемой волновой функцией (29). В то же время в области применимости самосогласованной ТВ: $d/(1+\gamma_0)^{3/2} << 1$ она дает более точные значения, чем обычная ТВ, которая справедлива при более жестких условиях: $\hbar \omega_0 \gg M_0$, или $B = (d-1-ind)/2\lambda_0 << 1$.

Литература

- I. Coon J.B., Naugle N. W., Mc Kenzie R.D. Journ. Molec. Spectrosc., 1966, 20, p. 107.
- 2. Clayman B.P. et al. Phys. Rev., 1971, B3, p. 1351.
- 3. Le Gennes P.G., Solid St. Comm., 1963, 1, p.132.
- Глазман И.М. Прямые методы качественного спектрального анализа сингулярных дифференциальных операторов. Физматгиз, М., 1963.
- 5. Гавурин М.К. Изв. вузов, Матем., 1958, 5(6), 18.
- Гареев Ф.А. и др. ЖВМ и МФ, 1977, 17, 2, 407.
- 7. Канторович Л.В., Акилов Г.П. Функциональный анализ. Наука, М., 1977.
- 8. Пузынин И.В., Пузынина Т.П. В сб. "Алгоритмы и программы для решения некоторых задач физики", кгкі -74-34, Будапешт, 1974,93.
- 9. Гизаткулов М.Х. и др. ОИЯИ, РІІ-10029, Дубна, 1976.
- IO. Кивистик Л.А. ДАН СССР, 1961, 136, 1, 22.
- II. Гавурин М.К. УМН, 1957, 12, 1(73), 173.
- 12. Калиткин Н.Н. Численные методы. Наука, М., 1978.
- 13. Жидков Е.П. и др. ОИЯИ, Ph-9512, Дубна, 1976.
- 14. Самарский А.А. Теория разностных схем. Наука, М., 1977.
- 15. Марчук Г.И., Шайдуров В.В. Повышение точности решений разностных схем. "Наука", М., 1979.
- 16. Жидков Е.П., Пузынин И.В. ЖВМ и М⊉, 1969, 9,2,442.
- 17. Сальвадори М. Дж. Численные методы в технике. ИЛ, М., 1955.
- 18. Плакида Н.М., Иванов В.В. ОИЯИ, РІ7-80-194, Дубна, 1980; Physica status sol. (b) 1980, 101, 627.
- Плакида Н.М. ОИЯИ, РІ7-80-602, Дубна, 1980; Физ.низк.темп., 1981, № 7.
- Плакида Н.М. В кн.: "Статистическая и квантовая теория поля", под ред. Н.Н.Боголюбова. "Наука", М., 1973, стр. 205.

Рукопись поступила в издательский отдел 14 апреля 1981 года.