СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ДУБНА

P11 - 11800

15 1-79

146 2-79 Я.Боганч, А.Надь, А.Сабо

C342a

6-73

ОПРЕДЕЛЕНИЕ ПРОБЕГОВ *а* - ЧАСТИЦ В МНОГОКОМПОНЕНТНЫХ ВЕЩЕСТВАХ

P11 - 11800

А.Боганч, А.Надь, А.Сабо

ЭПРЕДЕЛЕНИЕ ПРОБЕГОВ *а* -ЧАСТИЦ З МНОГОКОМПОНЕНТНЫХ ВЕЩЕСТВАХ

063820 13	BUGARETYT
REGARKS MORE	CLEARNE
SHEIMO	121{A

Боганч Я., Надь А., Сабо А.

P11 - 11800

Определение пробегов а -частиц в многокомпонентных вешествах

Описан математический (на основе dE/dx) метод расчета пробегов (R) а -частиц в различных многокомпонентных веществах. Целью работы являлось определение концентрации и распределения бора в тонких поверхностных слоях полупроводников, стекловидных металлов и биологических материалов. Значения \bar{R}_{p} в зависимости от потери энергии a частиц и химических составов исследуемых материалов представлены в таблицах. Установлено, в каких пределах лежат значения R для различных соединений.

Работа выполнена в Лаборатории нейтронной физики ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1978

Bogancs J., Nagy A., Szabo A.

P11 - 11800

Calculation of a-Particle Ranges in Multicomponent Substances

A method for calculating a-particle ranges (\overline{R}) in multicomponent substances is described on the basis of dE/dx. The aim of the present work is to obtain the B concentration and its distribution in thin skin surfaces of semiconductors, glass metals and biological objects, R_p values versus *a*-particle energy losses and chemical compounds of substances under investigation are shown in tables. The \overline{R}_n limits for different compounds are given.

The investigation has been performed at the Laboratory of Neutron Physics, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1978

© 1978 Объединенный институт ядерных исследований Дубна

ВВЕДЕНИЕ

В предыдущих работах / 1-6/ были изложены результаты исследований по определению концентрации и распределения бора в кремнии. Используемая методика основана на измерении потерь энергии a-частиц, осво-бождающихся в реакции ¹⁰ B(n, a) ⁷Li. ¹⁰ B⁺ вводился в образцы путем ионной бомбардировки в области энергин имплантации 20-80 кэВ.

Для определения пробегов (R _р) ионов бора, имплантированных в кремнии, использовалась приближенная формула:

 $\overline{\mathbf{R}}_{\mathrm{n}} = 3.46 \cdot 10^{-3} \cdot \Delta \mathbf{E}_{a}$

где ΔE_a - измеренные потери энергии *a*-частиц / кэВ/, формула применима для $\Delta E_a \leq 100$ кэВ; \overline{R}_p - в мкм. В более общем виде

$$\overline{R}_{p} = \int_{E_{0}}^{E_{0}-\Delta E_{a}} (dE/dx)^{-1} dE.$$
 /1/

Для расчета тормозной способности (dE/dx) pasличных материалов значения тормозных сечений (ϵ_a) бы-ли заимствованы из работы /7/:

 $\epsilon_a = \frac{dE}{dS} = \frac{1}{N} \cdot \frac{dE}{dx} = \sum_{n=0}^{5} a_n E^n$, где dE/dS - потеря энергин, отнесенная к поверхностным плоскостям / атом · см⁻²/, N - число атомов в одном см³материала, а_n - коэффициенты полуэмпирического полинома.

Так как в работе $^{/7/}$ величины ϵ_a даны в единицах эB.10⁻¹⁵. атом $\cdot cm^{-2}$, то при расчетах тормозных способностей (dE/dx) были применены переводные коэффициенты. Так, например, в случае кремния: N = = 5,024.10²² атом $\cdot cm^{-3}$, а коэффициенты для *a*-частиц а $_{\bar{0}}$ = 291,24, а $_1$ = 0,2843, а $_2$ = -3,9016.10⁻⁴, а $_3$ = = 1,8292.10⁻⁷, а $_4$ = -3,8303.10⁻¹¹, a_5 = 3,0119.10⁻¹⁵.

На практике часто встречаются задачи, решение которых требует определений пробегов заряженных частиц в многокомпонентных веществах. Так, например, перед нами ставилась задача определения концентрации и распределения бора по глубине в различных полупроводниковых (Si, SiO₂) материалах и так называемых стекловидных металлах, имеющих общий элементный состав $Fe_a Ni_b Cr_c P_d B_e (a + b + c \approx 80, d + e \approx 20).$

Наряду с этими веществами изучалось стекло марки ЗС-5 для вакуумных ламп и приборов, имеющее следующий состав: SiO₂-68%, B₂O₃-20%, Al₂O₅3%, Na₂O-4% и K₂O-5%. Этому составу соответствует приблизительно "химическое соединение" Si₂₁₂ Al₁₀ Na₂₄K ₂₀O₆₂₅ B₁₀₉.

Измерялась также концентрация бора в растительном веществе - листьях кукурузы. Приблизительный химический состав - H₅₁C₂₃O₂₆ был затем, уже после определения концентрации бора, уточнен: C₂₃O₂₆H₅₀B.

Расчет \overline{R}_p для многокомпонентных веществ проводится методом численного интегрирования, который можно иллюстрировать на примере SiO₂. Для проведения расчетов в *табл.* 1 даны исходные константы для интересующих нас элементов /7/.

Величина dE/dx для SiO₂ определяется по формуле:

 $\frac{dE}{dx} = n'(2\sum_{i=0}^{5} a_i E^i + \sum_{i=0}^{5} b_i E^i) ,$

а_i - исходные константы для кислорода, взятые из *maбл. 1*, b_i - исходные константы для кремния, взятые из табл. 1, n' - число "молекул" в одном cm^3 , поделенное на величину 10²²:

$$n' = \frac{A \cdot S}{M} \cdot 10^{-22},$$

где <u>А</u> - число Авогадро, S - удельный вес, <u>М</u> - молекулярный вес.

В случае SiO₂ n' = 2,197 молекул см⁻³. Коэффициенты полуэмпирического полинома для SiO₂ получены следующим образом:

 $c_{0} = 2,197 / 2.2,590 \cdot 10^{1} + 5,797 \cdot 10^{1} / = 241,16,$ $c_{1} = 2,197 / 2.7,330 \cdot 10^{-2} + 5,659 \cdot 10^{-2} / = 0,44600,$ $c_{2} = 2,197 / 2 \cdot -8,050 \cdot 10^{-5} + -7,766 \cdot 10^{-5} / =$ $= -5,2434 \cdot 10^{-4},$ $c_{3} = 2,197 / 2 \cdot 3,517 \cdot 10^{-8} + 3,641 \cdot 10^{-8} / = 2,3453 \cdot 10^{-7},$ $c_{4} = 2,197 / 2 \cdot -7,100 \cdot 10^{-12} + -7,624 \cdot 10^{-12} / =$ $= -4,7947 \cdot 10^{-11},$ $c_{5} = 2,197 / 2 \cdot 5,462 \cdot 10^{-16} + 5,995 \cdot 10^{-16} / = 3,7171 \cdot 10^{-15}.$ Формула $\frac{dE}{dx}$ для SiO₂: $\frac{dE}{dx} = \sum_{i=0}^{5} c_{i}E^{i}$. $\frac{dE}{dx} = 241,16E^{0} + 0,4460E^{1} - 5,2434 \cdot 10^{-4}E^{2} + 2,3453 \cdot 10^{-7}E^{3} - 4,7547 \cdot 10^{-11}E^{4} + 3,7171 \cdot 10^{-15}E^{5}$.

Расчеты \overline{R}_p на основе полученных dE/dx проводились на ЭВМ БЭСМ-6 по приведенной ниже программе.

РЕЗУЛЬТАТЫ И ВЫВОДЫ

Таблица 2 показывает полученные величины \overline{R}_{p} для SiO₂ в мкм. Первая величина соответствует энергии /1471-1/ кэВ, а последняя - /1471-300/ кэВ.

На *рисунке* показаны зависимости R_р от потерь энергий *а*-частиц в некоторых материалах.

^УИз *табл. 2 н 3 и рисунка* видно, в каких пределах лежат значения R_р для различных соединений.

C C pr	IIPOFPAMMA Ogram for the calculation of main projected range	لتركم	2,709•10 ⁻¹⁶	5,291.10 ⁻¹⁶	5,462•I0 ^{-I6}	I,339•I0 ^{-I6}	-4,046.10 ⁻¹⁷	5,995.IO ^{-I6}	6,570,10 ⁻¹⁶	9,000.IO ^{-I6}	7,290.I0 ^{-I6}	9,011.10 ⁻¹⁶	5,893•I0 ^{-I6}
C FO C RE C C	R L()L KEV ALPHA PARTICLES IN SIO2 SULTS ARE GIVEN IN MICRON DIMENSION RESO(300,2) EXTERNAL FUNCT	ţ,	-3,507.I0 ⁻¹²	-6,859.I0 ^{-I2}	-7,100.10 ⁻¹²	-I,9I8•I0 ^{-I2}	2,662.I0 ^{-I3}	-7,624.10 ⁻¹²	-8,329•I0 ^{-I2}	-I,208.I0 ^{-II}	-9,690.I0 ^{-I2}	-I,203·I0 ^{-II}	-7,482.IO ^{-I2}
	DATA(((A(I,J),I=1,2),J=1,6)=241.16,1.,0.44600,1.,-5.2434E-4,1., * 2.3453E-7,1.,-4.7947E-11,1.,3.7171E-15,1.) DO 4 J=1,2 KK=J	٤J	1,719-10 ⁻⁸	3,379•10 ⁻⁸	3,517.10 ⁻⁸	I,088.I0 ⁻⁸	3,401.10 ⁻¹⁰	3,641.10 ⁻⁸	4,009•I0 ⁻⁸	6, I75•I0 ⁻⁸	4,910-10 ⁻⁸	6,102·10 ⁻⁸	3,732•10 ⁻⁸
	E01=1471. 0 E1=E01 1 D0 4 I=1,300 0 A0=E01 0 E1=E1-1. 0	Ę	-3,808.10 ⁻⁵	-7,659.10 ⁻⁵	-8,050.10 ⁻⁵	-2,979.I0 ⁻⁵	-4,752.10 ⁻⁶	-7,766.10 ⁻⁵	-8,848.IO ⁻⁵	-1,454•10 ⁻⁴	-I,I56.I0 ⁻⁴	-1,431.10 ⁻⁴	
	REPS1=0,005 P AEPS1=1.E-18 P H1=0.1 P CALL SIMPS(AO,E1,H1,REPS1,AEPS1,FUNCT,R,RES,IH,IABS) P RESO(1,J)=RES P	ľu	2,934.I0 ⁻²	6,935.IO ⁻²	7,330.I0 ⁻²	3,227.I0 ⁻²	6,773.IO ⁻⁴	5,659.IO ⁻²	7,415.10 ⁻²	I,351•10 ^{-I}	I,I08.I0 ^{-I}	I,375•I0 ^{-I}	9,779.I0 ⁻²
4 8 10	CONTINUE PRINT 8 PORMAT(1H1,///40X,40HMAINRP IN THE CASE OP ZIEGLER,S POLINOME//) PRINT 10,(RESO(I,1),I=1,300) FORMAT(10(1X,E11.4)/)	ືພ	2,608•19 ¹	I,595.I0 ^I	2,590.I0 ^I	3,329•I0 ^I	5,594.IO ^I	5,797.IO ^I	4,729•I0 ^I	4,869•10 ¹	5,064.I0 ^I	4,436•I0 ^I	4,159-10 ¹
	END FUNCTION FUNCT(R) COMMON/BLOC1/ A(2,6),KK FUNCT=0. Z=-1.	Элемент	B	U	0	Na	N.	ŝ	ፈ	м	ئ	Fe	N.
2	DO 2 I=1,6 Z=Z+1 FUNCT=FUNCT+A(KK,I)*(R**Z) CONTINUE FUNCT=-1./FUNCT RETURN END	Порядковый номер	5	9	8	II	13	14	I5	61	24	26	28

.

Таблица 2

Значения \vec{R}_p для SiO 2 в зависимости от потери энергии *а*-частиц $\Delta E = 10(j-1) + i / \kappa \mathcal{B}/$, j - номер строки, i - номер столбца.

i i	I	2	3	4	5	6	7	8	ê	· IO
I	3.2227-03	6.4443-03	9.6650-03	I.2885-02	1.6103-02	1.9321-02	2.2537-02	2.5753-02	2.8968-02	3.2181-02
2	3.5394-02	3.8605-02	4.1816-02	4.5025-02	4.8234-02	5.1441-02	5.4648-02	5.7853-02	6.1058-02	6.4261-02
3	6.7464-02	7.0665-02	7.3866-02	7.7065-02	8.0264-02	8.3451-02	8.6658-02	8.9853-02	9.3048-02	9.6241-02
4.	9.9434-02	I.0263-0I	I.0582-0I	I.090I-0I	I.I2I9-0I	I.I538-0I	I.I857-0I	I.2175-0I	I.2494-0I	I.2812-0I
5	I.3I30-0I	I.34 49-0I	I.3767-0I	I.4085-0I	I.4402-0I	I.4720-0I	I.5038-0I	I.5355-0I	I.5673-0I	I.5990-0I
6	I.6308-0I	I.6625-0I	I.6942-0I	I.7259-0I	I.7576-0I	I.7892-0I	I.8209–0I	I.8526-0I	I.8842-0I	I.9158-0I
7	I.9475-0I	I.979I-0I	2.0I07-0I	2.0423-0I	2.0739-0I	2.I055-0I	2.I370-0I	2.I686-0I	2.2001-01	2.2317-0I
8.	2.2632-0I	2.2947-0I	2.3263-0I	2.3578-0I	2.3892-0I	2.4207-0I	2.4522-0I	2.4837-0I	2.5I5I-0I	2.5466-0I
9	2.5780-0I	2.6094-01	2.6408-0I	2. 6722-0I	2.7036-0I	2.7350-0I	2.7664-0I	2.7978-0I	2.8291-01	2.8605-0I
IO.	2.89I 8- 0I	2.923I-0I	2.9544-0I	2.9857-0I	3.0170-0I	3.0483-0I	3.0796-0I	3.II09-0I	3.1421-01	3.I734-0I
II	3.2046-0I	3.2359-0I	3.267I-0I	3.2983-0I	3.3295-0I	3.3607-0I	3.39I9-0I	3.4231-01	3.4542-0I	3.4854-0I
12	3.5I65-0I	3.5477-0I	3.5788-OI	3.6099-0I	3.64I0-0I	3.6721-01	3.7032-0I	3.7343-0I	3.7654-0I	3.7964-0I
13	3.8275-0I	3.8585-0I	3.8895-0I	3.9206-0I	3.95I6-0I	3.9826-0I	4.0I36-0I	4.0446-0I	4.0755-0I	4.I065-0I
I4	4.I375-0I	4.I684-0I	4.I994-0I	4.2303-0I	4.2612-0I	4.292I-0I	4.3230-0I	4.3539-0I	4.3848-0I	4.4I57-0I
I5	4.4465-0I	4.4774-0I	4.5082-0I	4.539I- 0I	4.5699-0I	4.6007-0I	4.63I5-0I	4.6623-0I	4.693I-0I	4.7239-0I
I6.	4.7547-0I	4.7854-0I	4.8I62-0I	4.8469-0I	4.8777-OI	4.9084-0I	4. 9391–01	4.9698-0I	5.0005-0I	5.03I2-0I
I7	5.06I9-0I	5.0926-0I	5.I232-0I	5.I539-0I	5.I845-0I	5.2152-01	5.2458-0I	5.2764-0I	5.3070-0I	5.3376-0I
Ið	5.3682-0I	5.3988-0I	5.4294-0I	5.4599-0I	5.4905-0I	5.52I0-0I	5.55I6-0I	5.582I-0I	5.6I26-0I	5.643I-0I
19	5.67360I	5.704I-0I	5.7346-0I	5.765I - 0I	5.7955 - 0I	5.8260-0I	5.8564-0I	5.8869 - 0I	5.9173-01	5.9477-0I
20	5.978I-0I	6.0085 -01	6.0389 - 0I	6.0693-0I	6.0997-0I	6.I30I-0I	6.I604-0I	6.1908-01	6.22II-0I	6 .25I4- 0I
2I	6.28I8-DI	6,3I2I-0I	6 .3424-0 1	6.3727-0I	6.4030-0I	6.4332-0I	6 . 4635–0I	6 .4 938–0I	6.5240-0I	6.5543-0I
22	6.5845-OI	6.6I47-0I	6.6450-0I	6.6752 -0 I	6.7054-0I	6.7356-0I	6.7657 - 0I	6 .7 95 9- 0I	6.826I0I	6.85 62-0 I
23	6.8864 0I	6.9165 - 01	6.9467-0I	6.9768-0I	7.0069- 01	7.0370-0I	7.067I-0I	7.0972-0I	7.1273-01	7.I573-OI
24	7.1874-0I	7.2175-0I	7.2475-DI	7.2775-OI	7.3076-0I	7.3376-0I	7.3676-0I	7.3976-0I	7.4276-0I	7.4576-0I
25	7.4876-0I	7.5175-0I	7.5475-0I	7.5775-OI	7.6074-0I	7.6373-OI	7.6673-0I	7.6972-0I	7.727I-OI	7.7570-OI
26	7.7869-0I	7.8I68-0I	7.8467-0I	7.8765-0I	7.9064-0I	7.9363-0I	7.966I_0I	7 .9 959 -01	8.0258-0I	8.0556-0I
27	8.0854-DI	8.1152-01	8.I450-0I	8.I748-0I	8.2046-0I	8.2343-0I	8.264I-0I	8.2939-0I	8.3236-0I	8.3533-0I
28	8.3831-01	8.4128-01	8.4425-0I	8.4722-0I	8.5019 -01	8.5316-01	8.56I3-0I	8.59I0 -0I	8.6206-0I	8.650 3-0 I
29	8.6799-0I	8.7096-0I	8.7392-0I	8.7688-0I	8.7984-Qí	8.8280-0I	8.8577-0I	8.8872-0I	8.9I68-0I	8.9464-0I
30	8.9760-0I	9.0055-0I	9.0351-01	9.0646-0I	9.0942- 0 1	9,1237-01	9.1532-01	9.1827-0I	9.2122-01	9.2417-01

8

Tabauua 3

Значения Крв зависимости от потери энергии

Химический состав		Ř, [MAN]	при потере	энергаи
	I KaB	IO KaB	IOO KaB	300 ĸaB
B20 Feso	I.6376.I0 ⁻³	I,6358.IO ⁻²	I,6I80.I0 ⁻¹	4,7449.10 ⁻¹
BAR Ferr	I,6I38.I0 ⁻³	I,6I20.I0 ⁻²	I,5945•I0 ^{-I}	4,6766.I0 ^{-I}
Nite Fe., Cr. P., Be	I,6238•I0 ⁻³	I,6223.IO ⁻²	I,608I.I0 ^{-I}	4,7382.I0 ^{-I}
Felo Ning B20	I,6000.I0 ⁻³	I,5987.I0 ⁻²	I,5863.IO ^{-I}	4,6845•10 ⁻¹
Fc., P,, B,,	1,6510.10 ⁻³	I,6492.IO ⁻²	I,63I2•I0 ^{-I}	4,7837.I0 ^{-I}
Siziz B409 ALO Naze K20 0625	2,4899•I0 ⁻³	2,4885.10 ⁻²	2,4747.IO ^{-I}	7,3372•10 ⁻¹

Зависимость пробегов ионов бора /в мкм/ от потери энергии /кэВ/ а -частиц. 1 - $Fe_{40}Ni_{40}P_{14}B_6$, $\rho =$ = 7,4 г.см⁻³; 2 - Si, $\rho = 2,3$ г.см⁻³; 3 - $H_{50}C_{23}O_{26}B$, $\rho = 1,0$ г см⁻³.

Например, отношение величины \bar{R}_p при потере энергии 100 кэВ в случае $B_{20}Fe_{80}$ и Si

$$\frac{\bar{R}_{p}(B_{20}Fe_{80})}{\bar{R}_{p}(Si)} = \frac{0,16180}{0,34067} = 0,475.$$

Таким образом, пробег *а*-частиц с энергией 1,47 *МэВ* в кремнии составляет приблизительно 5 *мкм*, в металлических стеклах - только 2 42,5 *мкм*.

10

В рамках данной работы мы не обсуждаем причин расхождений рассчитанных по формуле /1/ значений и экспериментальных данных. Эти вопросы подробно дискутируются в работах ^{/8-22/}.

Отметим, что концентрация бора в измеренных образцах, определенная на основе расчетных dE/dx, хорошо согласуется с теоретическим содержанием бора, рассчитанным по химическому составу.

ЛИТЕРАТУРА

- 1. Боганч Я. и др. ОИЯИ, Р14-8295, Дубна, 1974.
- 2. Боганч Я. и др. Isotopenpraxis, 1975, 11(12), р.429-432.
- 3. Боганч Я. и др. ОИЯИ, РЗ-10777, Дубна, 1977.
- 4. Nagy A. e.a. Izotoptechnika, 1977, 20, pp.53-71.
- 5. Nagy A.Z. e.a. J.Radioanal.Chem., 1977, 38, pp.19-27.
- Bogancs J. e.a. Radiochem. Radioanal. Lett., 1978, 32 (1-2), p.71-82.
- 7. Ziegler J.F., Chu W.K. Atomic Data and Nuclear Data Tables, 1974, 13 (5).
- 8. Bichsel H., Tschalaer G. Nuclear Data Tables, 1967, A3. b.343.
- 9. Northcliffe L.C., Schilling R.F. Nuclear Data Tables, 1970, A7, p.233.
- 10. Armstrong T.W., Chandler K.C. Calculation of Stopping Power and Ranges for Muons, Charged Pions, Protons and Heavy Ions. ORNL, 1973, CCC-228.
- 11. Немец О.Ф., Гофман Ю.В. Справочник по ядерной физике. "Наукова думка", Киев, 1975.
- 12. Ziegler J.F., Cole G.W., Baglin J.E.E. J.Appl.Phys., 1972, 43, p.3809.
- 13. Eisen F.H. e.a. Radiat. Eff., 1972, 13, p.93.
- 14. Thompson D.A., Macintosh W.D. J.Appl.Phys., 1971, 42, p.396.
- 15. Chu W.K., Powers D. Phys. Rev., 1969, 187, p.478.
- 16. Inokuti M. Rev. Mod. Phys., 1972, 43, p.297.
- Cheshire I.M., Poate I.M. Atomic Collision Phenomena in Solids. North-Holland, Amsterdam, 1970, p.351.
- 18. Janni J.F. Air Force Weappons Lab. Report AFWL-TR-65, 1966, p.150.
- 19. Bourland P.D., Chu W.K., Powers D. Phys. Rev., 1971, B3, p.3625.

- 20. Rousseau C.C., Chu W.R., Powers D. Phys. Rev., 1971, A4, p.1066.
- 21. Feng J.S.Y. e.a. Thin Solid Films, 1973, 19, p.195.
- 22. Linhard J., Winther A. Kgl. Danske Videnskab. Selskab. Mat. Fys. Medd., 1964, 34, No. 4.

Рукопись поступила в издательский отдел 25 июля 1978 года.

12